scholarly journals Metal Nanoparticle Catalysis

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1210
Author(s):  
Patricia Lara ◽  
Luis M. Martínez-Prieto

In recent years, the catalytic use of metal nanoparticles (MNPs) has experienced a growing interest [...]

Author(s):  
Israel Cano ◽  
Luis M. Martínez-Prieto ◽  
Piet W. N. M. van Leeuwen

Supports, ligands and additives can promote heterolytic H2 splitting by a cooperative mechanism with metal nanoparticles.


2021 ◽  
pp. 1-6
Author(s):  
Serap Yiğit Gezgin ◽  
Abdullah Kepceoğlu ◽  
Hamdi Şükür Kiliç

In this study, silver (Ag) nanoparticle thin films were deposited on microscope slide glass and Si wafer substrates using the pulsed-laser deposition (PLD) technique in Ar ambient gas pressures of 1 × 10−3 and 7.5 × 10−1 mbar. AFM analysis has shown that the number of Ag nanoparticles reaching the substrate decreased with increasing Ar gas pressure. As a result of Ar ambient gas being allowed into the vacuum chamber, it was observed that the size and height of Ag nanoparticles decreased and the interparticle distances decreased. According to the absorption spectra taken by a UV–vis spectrometer, the wavelength where the localised surface plasmon resonance (LSPR) peak appeared was shifted towards the longer wavelength region in the solar spectrum as Ar background gas pressure was decreased. This experiment shows that LSPR wavelength can be tuned by adjusting the size of metal nanoparticles, which can be controlled by changing Ar gas pressure. The obtained extinction cross section spectra for Ag nanoparticle thin film was theoretically analysed and determined by using the metal nanoparticle–boundary element method (MNPBEM) toolbox simulation program. In this study, experimental spectrum and simulation data for metal nanoparticles were acquired, compared, and determined to be in agreement.


2015 ◽  
Vol 17 (3) ◽  
pp. 1597-1604 ◽  
Author(s):  
Abhinandan Banerjee ◽  
Robert W. J. Scott

Stable metal nanoparticles in tetraalkylphosphonium ionic liquids can catalyze hydrogenations, as well as phenol hydrodeoxygenation, owing to presence of adventitious borates.


2017 ◽  
Vol 14 (4) ◽  
pp. 132-139 ◽  
Author(s):  
Michael J. Renn ◽  
Matthew Schrandt ◽  
Jaxon Renn ◽  
James Q. Feng

Direct-write methods, such as the Aerosol Jet® technology, have enabled fabrication of flexible multifunctional 3-D devices by printing electronic circuits on thermoplastic and thermoset polymer materials. Conductive traces printed by additive manufacturing typically start in the form of liquid metal nanoparticle inks. To produce functional circuits, the printed metal nanoparticle ink material must be postprocessed to form conductive metal by sintering at elevated temperature. Metal nanoparticles are widely used in conductive inks because they can be sintered at relatively low temperatures compared with the melting temperature of bulk metal. This is desirable for fabricating circuits on low-cost plastic substrates. To minimize thermal damage to the plastics, while effectively sintering the metal nanoparticle inks, we describe a laser sintering process that generates a localized heat-affected zone (HAZ) when scanning over a printed feature. For sintering metal nanoparticles that are reactive to oxygen, an inert or reducing gas shroud is applied around the laser spot to shield the HAZ from ambient oxygen. With the shroud gas-shielded laser, oxygen-sensitive nanoparticles, such as those made of copper and nickel, can be successfully sintered in open air. With very short heating time and small HAZ, the localized peak sintering temperature can be substantially higher than that of damage threshold for the underlying substrate, for effective metallization of nanoparticle inks. Here, we demonstrate capabilities for producing conductive tracks of silver, copper, and copper–nickel alloys on flexible films as well as fabricating functional thermocouples and strain gauge sensors, with printed metal nanoparticle inks sintered by shroud-gas-shielded laser.


2018 ◽  
Vol 20 (38) ◽  
pp. 25078-25084 ◽  
Author(s):  
Haiyan Nan ◽  
Zhirong Chen ◽  
Jie Jiang ◽  
JiaQi Li ◽  
Weiwei Zhao ◽  
...  

Two transparent graphene–metal nanoparticle (NP) hybrid schemes, namely Au NPs covered by graphene layers and Au NPs encapsulated by graphene layers, are presented and the effect of graphene on the localized surface plasmon resonance of metal NPs is systematically investigated.


Author(s):  
Anil Yuksel ◽  
Michael Cullinan ◽  
Edward T. Yu ◽  
Jayathi Murthy

Abstract Metal nanoparticles have attracted intense attention due to their unique optical and thermal properties in various next generation applications such as micro-nano electronics and photonics. The near-field confinement between closely packed metal nanoparticles, which is enhanced due to their plasmonic behavior, creates high thermal energy densities under visible to near-infrared wavelength laser irradiation. As metal nanoparticles tend to be oxidized or change shape under laser illumination, resulting in nonlinear optical and thermal behavior, surrounding each metal nanoparticle with a dielectric shell could be a potential way to prevent these effects as well as to engineer their plasmonic behavior. In this study, we investigate energy transport within dimer and 4 nanoparticle (chain) configurations of 50 nm radius Au nanoparticles surrounded by dielectric shells under illumination from various laser sources in different dielectric media.


2010 ◽  
Vol 254 (9-10) ◽  
pp. 1179-1218 ◽  
Author(s):  
Ning Yan ◽  
Chaoxian Xiao ◽  
Yuan Kou

2016 ◽  
Vol 4 (48) ◽  
pp. 19107-19115 ◽  
Author(s):  
Li Fu ◽  
Guoxin Chen ◽  
Nan Jiang ◽  
Jinhong Yu ◽  
Cheng-Te Lin ◽  
...  

We report a facile and general approach for the synthesis of boron nitride nanosheet (BNNS)–metal nanoparticle (NP) composites at room temperature without adding any reducing agent.


Sign in / Sign up

Export Citation Format

Share Document