scholarly journals Production of New Isoflavone Glucosides from Glycosylation of 8-Hydroxydaidzein by Glycosyltransferase from Bacillus subtilis ATCC 6633

Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 387 ◽  
Author(s):  
Chien-Min Chiang ◽  
Tzi-Yuan Wang ◽  
Szu-Yi Yang ◽  
Jiumn-Yih Wu ◽  
Te-Sheng Chang

8-Hydroxydaidzein (8-OHDe) has been proven to possess some important bioactivities; however, the low aqueous solubility and stability of 8-OHDe limit its pharmaceutical and cosmeceutical applications. The present study focuses on glycosylation of 8-OHDe to improve its drawbacks in solubility and stability. According to the results of phylogenetic analysis with several identified flavonoid-catalyzing glycosyltransferases (GTs), three glycosyltransferase genes (BsGT110, BsGT292 and BsGT296) from the genome of the Bacillus subtilis ATCC 6633 strain were cloned and expressed in Escherichia coli. The three BsGTs were then purified and the glycosylation activity determined toward 8-OHDe. The results showed that only BsGT110 possesses glycosylation activity. The glycosylated metabolites were then isolated with preparative high-performance liquid chromatography and identified as two new isoflavone glucosides, 8-OHDe-7-O-β-glucoside and8-OHDe-8-O-β-glucoside, whose identity was confirmed by mass spectrometry and nuclear magnetic resonance spectroscopy. The aqueous solubility of 8-OHDe-7-O-β-glucoside and 8-OHDe-8-O-β-glucoside is 9.0- and 4.9-fold, respectively, higher than that of 8-OHDe. Moreover, more than 90% of the initial concentration of the two 8-OHDe glucoside derivatives remained after 96 h of incubation in 50 mM of Tris buffer at pH 8.0. In contrast, the concentration of 8-OHDe decreased to 0.8% of the initial concentration after 96 h of incubation. The two new isoflavone glucosides might have potential in pharmaceutical and cosmeceutical applications.

Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 349 ◽  
Author(s):  
Te-Sheng Chang ◽  
Chien-Min Chiang ◽  
Yi-Yun Siao ◽  
Jiumn-Yih Wu

The biotransformation of antcin K, a major ergostane triterpenoid from the fruiting bodies of Antrodia cinnamomea, by Bacillus subtilis (B. subtilis) ATCC 6633 was studied. Four metabolites from the biotransformation were isolated with preparative high-performance liquid chromatography and identified as 25S-antcin K 26-O-β-glucoside, 25R-antcin K 26-O-β-glucoside, 25S-antcin K 26-O-β-(6′-O-succinyl)-glucoside, and 25R-antcin K 26-O-β-(6′-O-succinyl)-glucoside with mass and nuclear magnetic resonance spectral analysis. By using either 25S-antcin K 26-O-β-glucoside or 25R-antcin K 26-O-β-glucoside as the biotransformation precursor, it was proven that 25S-antcin K 26-O-β-(6′-O-succinyl)-glucoside and 25R-antcin K 26-O-β-(6′-O-succinyl)-glucoside were biotransformed from 25S-antcin K 26-O-β-glucoside and 25R-antcin K 26-O-β-glucoside, respectively. To the best of our knowledge, this is the first study on the glycosylation of triterpenoids from A. cinnamomea, and the first time the succinylation of triterpenoid glycosides by microorganisms has been found. In addition, all four antcin K glucoside derivatives are new compounds.


2018 ◽  
Vol 19 (11) ◽  
pp. 3469 ◽  
Author(s):  
Te-Sheng Chang ◽  
Jiumn-Yih Wu ◽  
Tzi-Yuan Wang ◽  
Kun-Yuan Wu ◽  
Chien-Min Chiang

Bacillus subtilis ATCC (American type culture collection) 6633 was found to biotransform ganoderic acid A (GAA), which is a major lanostane triterpenoid from the medicinal fungus Ganoderma lucidum. Five glycosyltransferase family 1 (GT1) genes of this bacterium, including two uridine diphosphate-dependent glycosyltransferase (UGT) genes, BsUGT398 and BsUGT489, were cloned and overexpressed in Escherichia coli. Ultra-performance liquid chromatography confirmed the two purified UGT proteins biotransform ganoderic acid A into a metabolite, while the other three purified GT1 proteins cannot biotransform GAA. The optimal enzyme activities of BsUGT398 and BsUGT489 were at pH 8.0 with 10 mM of magnesium or calcium ion. In addition, no candidates showed biotransformation activity toward antcin K, which is a major ergostane triterpenoid from the fruiting bodies of Antrodia cinnamomea. One biotransformed metabolite from each BsUGT enzyme was then isolated with preparative high-performance liquid chromatography. The isolated metabolite from each BsUGT was identified as ganoderic acid A-15-O-β-glucoside by mass and nuclear magnetic resonance spectroscopy. The two BsUGTs in the present study are the first identified enzymes that catalyze the 15-O-glycosylation of triterpenoids.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3457 ◽  
Author(s):  
Te-Sheng Chang ◽  
Chien-Min Chiang ◽  
Yu-Han Kao ◽  
Jiumn-Yih Wu ◽  
Yu-Wei Wu ◽  
...  

Ganoderic acid A (GAA) is a bioactive triterpenoid isolated from the medicinal fungus Ganoderma lucidum. Our previous study showed that the Bacillus subtilis ATCC (American type culture collection) 6633 strain could biotransform GAA into compound (1), GAA-15-O-β-glucoside, and compound (2). Even though we identified two glycosyltransferases (GT) to catalyze the synthesis of GAA-15-O-β-glucoside, the chemical structure of compound (2) and its corresponding enzyme remain elusive. In the present study, we identified BsGT110, a GT from the same B. subtilis strain, for the biotransformation of GAA into compound (2) through acidic glycosylation. BsGT110 showed an optimal glycosylation activity toward GAA at pH 6 but lost most of its activity at pH 8. Through a scaled-up production, compound (2) was successfully isolated using preparative high-performance liquid chromatography and identified to be a new triterpenoid glucoside (GAA-26-O-β-glucoside) by mass and nuclear magnetic resonance spectroscopy. The results of kinetic experiments showed that the turnover number (kcat) of BsGT110 toward GAA at pH 6 (kcat = 11.2 min−1) was 3-fold higher than that at pH 7 (kcat = 3.8 min−1), indicating that the glycosylation activity of BsGT110 toward GAA was more active at acidic pH 6. In short, we determined that BsGT110 is a unique GT that plays a role in the glycosylation of triterpenoid at the C-26 position under acidic conditions, but loses most of this activity under alkaline ones, suggesting that acidic solutions may enhance the catalytic activity of this and similar types of GTs toward triterpenoids.


Sign in / Sign up

Export Citation Format

Share Document