scholarly journals Endogenous Roles of Mammalian Flavin-Containing Monooxygenases

Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1001 ◽  
Author(s):  
Ian R. Phillips ◽  
Elizabeth A. Shephard

Flavin-containing monooxygenases (FMOs) catalyze the oxygenation of numerous foreign chemicals. This review considers the roles of FMOs in the metabolism of endogenous substrates and in physiological processes, and focuses on FMOs of human and mouse. Tyramine, phenethylamine, trimethylamine, cysteamine, methionine, lipoic acid and lipoamide have been identified as endogenous or dietary-derived substrates of FMOs in vitro. However, with the exception of trimethylamine, the role of FMOs in the metabolism of these compounds in vivo is unclear. The use, as experimental models, of knockout-mouse lines deficient in various Fmo genes has revealed previously unsuspected roles for FMOs in endogenous metabolic processes. FMO1 has been identified as a novel regulator of energy balance that acts to promote metabolic efficiency, and also as being involved in the biosynthesis of taurine, by catalyzing the S-oxygenation of hypotaurine. FMO5 has been identified as a regulator of metabolic ageing and glucose homeostasis that apparently acts by sensing or responding to gut bacteria. Thus, FMOs do not function only as xenobiotic-metabolizing enzymes and there is a risk that exposure to drugs and environmental chemicals that are substrates or inducers of FMOs would perturb the endogenous functions of these enzymes.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinjini Chakraborty ◽  
Veronika Eva Winkelmann ◽  
Sonja Braumüller ◽  
Annette Palmer ◽  
Anke Schultze ◽  
...  

AbstractSingular blockade of C5a in experimental models of sepsis is known to confer protection by rescuing lethality and decreasing pro-inflammatory responses. However, the role of inhibiting C5a has not been evaluated in the context of sterile systemic inflammatory responses, like polytrauma and hemorrhagic shock (PT + HS). In our presented study, a novel and highly specific C5a L-aptamer, NoxD21, was used to block C5a activity in an experimental murine model of PT + HS. The aim of the study was to assess early modulation of inflammatory responses and lung damage 4 h after PT + HS induction. NoxD21-treated PT + HS mice displayed greater polymorphonuclear cell recruitment in the lung, increased pro-inflammatory cytokine levels in the bronchoalveolar lavage fluids (BALF) and reduced myeloperoxidase levels within the lung tissue. An in vitro model of the alveolar-capillary barrier was established to confirm these in vivo observations. Treatment with a polytrauma cocktail induced barrier damage only after 16 h, and NoxD21 treatment in vitro did not rescue this effect. Furthermore, to test the exact role of both the cognate receptors of C5a (C5aR1 and C5aR2), experimental PT + HS was induced in C5aR1 knockout (C5aR1 KO) and C5aR2 KO mice. Following 4 h of PT + HS, C5aR2 KO mice had significantly reduced IL-6 and IL-17 levels in the BALF without significant lung damage, and both, C5aR1 KO and C5aR2 KO PT + HS animals displayed reduced MPO levels within the lungs. In conclusion, the C5aR2 could be a putative driver of early local inflammatory responses in the lung after PT + HS.


2020 ◽  
Vol 117 (44) ◽  
pp. 27319-27328
Author(s):  
Ofer Beharier ◽  
Vladimir A. Tyurin ◽  
Julie P. Goff ◽  
Jennifer Guerrero-Santoro ◽  
Kazuhiro Kajiwara ◽  
...  

The recently identified ferroptotic cell death is characterized by excessive accumulation of hydroperoxy-arachidonoyl (C20:4)- or adrenoyl (C22:4)- phosphatidylethanolamine (Hp-PE). The selenium-dependent glutathione peroxidase 4 (GPX4) inhibits ferroptosis, converting unstable ferroptotic lipid hydroperoxides to nontoxic lipid alcohols in a tissue-specific manner. While placental oxidative stress and lipotoxicity are hallmarks of placental dysfunction, the possible role of ferroptosis in placental dysfunction is largely unknown. We found that spontaneous preterm birth is associated with ferroptosis and that inhibition of GPX4 causes ferroptotic injury in primary human trophoblasts and during mouse pregnancy. Importantly, we uncovered a role for the phospholipase PLA2G6 (PNPLA9, iPLA2beta), known to metabolize Hp-PE to lyso-PE and oxidized fatty acid, in mitigating ferroptosis induced by GPX4 inhibition in vitro or by hypoxia/reoxygenation injury in vivo. Together, we identified ferroptosis signaling in the human and mouse placenta, established a role for PLA2G6 in attenuating trophoblastic ferroptosis, and provided mechanistic insights into the ill-defined placental lipotoxicity that may inspire PLA2G6-targeted therapeutic strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shashank Kumar ◽  
Kumari Sunita Prajapati ◽  
Mohd Shuaib ◽  
Prem Prakash Kushwaha ◽  
Hardeep Singh Tuli ◽  
...  

In the present article we present an update on the role of chemoprevention and other pharmacological activities reported on kurarinone, a natural flavanone (from 1970 to 2021). To the best of our knowledge this is the first and exhaustive review of kurarinone. The literature was obtained from different search engine platforms including PubMed. Kurarinone possesses anticancer potential against cervical, lung (non-small and small), hepatic, esophageal, breast, gastric, cervical, and prostate cancer cells. In vivo anticancer potential of kurarinone has been extensively studied in lungs (non-small and small) using experimental xenograft models. In in vitro anticancer studies, kurarinone showed IC50 in the range of 2–62 µM while in vivo efficacy was studied in the range of 20–500 mg/kg body weight of the experimental organism. The phytochemical showed higher selectivity toward cancer cells in comparison to respective normal cells. kurarinone inhibits cell cycle progression in G2/M and Sub-G1 phase in a cancer-specific context. It induces apoptosis in cancer cells by modulating molecular players involved in apoptosis/anti-apoptotic processes such as NF-κB, caspase 3/8/9/12, Bcl2, Bcl-XL, etc. The phytochemical inhibits metastasis in cancer cells by modulating the protein expression of Vimentin, N-cadherin, E-cadherin, MMP2, MMP3, and MMP9. It produces a cytostatic effect by modulating p21, p27, Cyclin D1, and Cyclin A proteins in cancer cells. Kurarinone possesses stress-mediated anticancer activity and modulates STAT3 and Akt pathways. Besides, the literature showed that kurarinone possesses anti-inflammatory, anti-drug resistance, anti-microbial (fungal, yeast, bacteria, and Coronavirus), channel and transporter modulation, neuroprotection, and estrogenic activities as well as tyrosinase/diacylglycerol acyltransferase/glucosidase/aldose reductase/human carboxylesterases 2 inhibitory potential. Kurarinone also showed therapeutic potential in the clinical study. Further, we also discussed the isolation, bioavailability, metabolism, and toxicity of Kurarinone in experimental models.


2019 ◽  
Author(s):  
Wang Jin ◽  
Kai-Yin Lo ◽  
Yung-Shin Sun ◽  
Ya-Han Ting ◽  
Matthew J Simpson

In vitro surface coatings are widely used to mimic the role of extracellular matrix in the in vivo environment. Different effects are reported for different surface coatings, however, some of these results are inconsistent across the literature. To explore the role of different surface coatings, we use a new modified stopper-based wound-healing assay, called a stopper assay, with two commonly used surface coatings: gelatin and poly-L-lysine (PLL). Our experimental data show the gap width decreases faster with the gelatin and PLL coatings. Similarly, the number of cells in certain subregions increases faster with these coatings. Unfortunately, neither of these observations provides definitive mechanistic insight into the role of the coatings. To provide such insight we calibrate the solution of the Fisher-Kolmogorov model to match the experimental data. Our parameter estimates indicate that both coatings significantly increase cell motility without affecting cell proliferation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daphne M. Peelen ◽  
Martin J. Hoogduijn ◽  
Dennis A. Hesselink ◽  
Carla C. Baan

The endothelium plays a key role in acute and chronic rejection of solid organ transplants. During both processes the endothelium is damaged often with major consequences for organ function. Also, endothelial cells (EC) have antigen-presenting properties and can in this manner initiate and enhance alloreactive immune responses. For decades, knowledge about these roles of EC have been obtained by studying both in vitro and in vivo models. These experimental models poorly imitate the immune response in patients and might explain why the discovery and development of agents that control EC responses is hampered. In recent years, various innovative human 3D in vitro models mimicking in vivo organ structure and function have been developed. These models will extend the knowledge about the diverse roles of EC in allograft rejection and will hopefully lead to discoveries of new targets that are involved in the interactions between the donor organ EC and the recipient's immune system. Moreover, these models can be used to gain a better insight in the mode of action of the currently prescribed immunosuppression and will enhance the development of novel therapeutics aiming to reduce allograft rejection and prolong graft survival.


2012 ◽  
Vol 56 (8) ◽  
pp. 4268-4276 ◽  
Author(s):  
Silvia Moretti ◽  
Silvia Bozza ◽  
Carmen D'Angelo ◽  
Andrea Casagrande ◽  
Maria Agnese Della Fazia ◽  
...  

ABSTRACTThis study investigated the possible mechanisms underlying the paradoxical caspofungin activityin vivoin preclinical aspergillosis. We evaluated the activity of escalating doses of caspofunginin vivoin different preclinical models of invasive aspergillosis, including mice deficient for selected innate immune receptors. The therapeutic efficacy of caspofungin in experimental invasive aspergillosis was strictly dose dependent, being observed at doses of 0.1 and 1 mg/kg of body weight depending on the experimental models. Paradoxical increase in pulmonary fungal burden as well as inflammatory pathology was observed at the highest dose of caspofungin (5 mg/kg), occurred independently of the so-called Eagle effect and susceptibility to caspofunginin vitro, and was contingent upon the presence of TLR2, Dectin-1, and TLR9. Increased expression of Dectin-1 and TLR9 were observed upon exposure to caspofunginin vitroandin vivo. Together, these findings suggest that the net activity of caspofunginin vivois orchestrated by the activation, directly or indirectly, of multiple innate immune receptors.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Sign in / Sign up

Export Citation Format

Share Document