scholarly journals Limited Proteolysis-Coupled Mass Spectrometry Identifies Phosphatidylinositol 4,5-Bisphosphate Effectors in Human Nuclear Proteome

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 68
Author(s):  
Martin Sztacho ◽  
Barbora Šalovská ◽  
Jakub Červenka ◽  
Can Balaban ◽  
Peter Hoboth ◽  
...  

Specific nuclear sub-compartments that are regions of fundamental processes such as gene expression or DNA repair, contain phosphoinositides (PIPs). PIPs thus potentially represent signals for the localization of specific proteins into different nuclear functional domains. We performed limited proteolysis followed by label-free quantitative mass spectrometry and identified nuclear protein effectors of the most abundant PIP—phosphatidylinositol 4,5-bisphosphate (PIP2). We identified 515 proteins with PIP2-binding capacity of which 191 ‘exposed’ proteins represent a direct PIP2 interactors and 324 ‘hidden’ proteins, where PIP2 binding was increased upon trypsin treatment. Gene ontology analysis revealed that ‘exposed’ proteins are involved in the gene expression as regulators of Pol II, mRNA splicing, and cell cycle. They localize mainly to non-membrane bound organelles—nuclear speckles and nucleolus and are connected to the actin nucleoskeleton. ‘Hidden’ proteins are linked to the gene expression, RNA splicing and transport, cell cycle regulation, and response to heat or viral infection. These proteins localize to the nuclear envelope, nuclear pore complex, or chromatin. Bioinformatic analysis of peptides bound in both groups revealed that PIP2-binding motifs are in general hydrophilic. Our data provide an insight into the molecular mechanism of nuclear PIP2 protein interaction and advance the methodology applicable for further studies of PIPs or other protein ligands.

2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S234-S234
Author(s):  
Lorna Farrelly ◽  
Shuangping Zhang ◽  
Erin Flaherty ◽  
Aaron Topol ◽  
Nadine Schrode ◽  
...  

Abstract Background Schizophrenia (SCZ) is a severe psychiatric disorder affecting ~1% of the world’s population. It is largely heritable with genetic risk reflected by a combination of common variants of small effect and highly penetrant rare mutations. Chromatin modifications are known to play critical roles in the mediation of many neurodevelopmental processes, and, when disturbed, may also contribute to the precipitation of psychiatric disorders, such as SCZ. While a handful of candidate-based studies have measured changes in promoter-bound histone modifications, few mechanistic studies have been carried out to explore how these modifications may affect chromatin to precipitate behavioral phenotypes associated with the disease. Methods We applied an unbiased proteomics approach to evaluate the epigenetic landscape of SCZ in human induced pluripotent stem cells (hiPSC), neural progenitor cells (NPCs) and neurons from SCZ patients vs. matched controls. We utilized proteomics-based, label free liquid chromatography mass spectrometry (LC-MS/MS) on purified histones from these cells and confirmed our results by western blotting in postmortem SCZ cortical brain tissues. Furthermore we validated our findings with the application of histone interaction assays and structural and biophysical assessments to identify and confirm novel chromatin ‘readers’. To relate our findings to a SCZ phenotype we used a SCZ rodent model of prepulse inhibition (PPI) to perform pharmacological manipulations and behavioral assessments. Results Using label free mass spectrometry we performed PTM screening of hiPSCs, NPCs and matured neurons derived from SCZ patients and matched controls. We identified, amongst others, altered patterns of hyperacetylation in SCZ neurons. Additionally we identified enhanced binding of particular acetylation ‘reader’ proteins. Pharmacological inhibition of such proteins in an animal model of amphetamine sensitization ameliorated PPI deficits further validating this epigenetic signature in SCZ. Discussion Recent evidence indicates that relevance and patterns of acetylation in epigenetics advances beyond its role in transcription and small molecule inhibitors of these aberrant interactions hold promise as useful therapeutics. This study identifies a role for modulating gene expression changes associated with a SCZ epigenetic signature and warrants further investigation in terms of how this early gene expression pattern perhaps determines susceptibility or severity of the SCZ disease trajectory.


2020 ◽  
Vol 219 (9) ◽  
Author(s):  
Joseph Dopie ◽  
Michael J. Sweredoski ◽  
Annie Moradian ◽  
Andrew S. Belmont

We present a simple ratio method to infer protein composition within cellular structures using proximity labeling approaches but compensating for the diffusion of free radicals. We used tyramide signal amplification (TSA) and label-free mass spectrometry (MS) to compare proteins in nuclear speckles versus centromeres. Our “TSA-MS ratio” approach successfully identified known nuclear speckle proteins. For example, 96% and 67% of proteins in the top 30 and 100 sorted proteins, respectively, are known nuclear speckle proteins, including proteins that we validated here as enriched in nuclear speckles. We show that MFAP1, among the top 20 in our list, forms droplets under certain circumstances and that MFAP1 expression levels modulate the size, stability, and dynamics of nuclear speckles. Localization of MFAP1 and its binding partner, PRPF38A, in droplet-like nuclear bodies precedes formation of nuclear speckles during telophase. Our results update older proteomic studies of nuclear speckles and should provide a useful reference dataset to guide future experimental dissection of nuclear speckle structure and function.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1845-1845
Author(s):  
Mariateresa Fulciniti ◽  
Manoj Bashin ◽  
Mehmet Kemal Samur ◽  
Rajya Bandi ◽  
Parantu K Shah ◽  
...  

Abstract Transcription factors (TFs) are important oncogenic regulator and are altered during tumor initiation and progression. Our oncogenomic analysis of gene expression data from large clinically-annotated patient samples identified TF Dp1 as one of the most important gene affecting both overall and event-free survival in multiple myeloma (MM). Elevated Dp1 expression was predictive of adverse clinical outcome, independent of Dp1 protein partners, E2Fs and RB, suggesting direct impact of Dp1 and providing the rationale to further evaluate its specific role in MM. We have observed high level of Dp1 expression and activity in MM cells which was further induced after interaction with bone marrow stromal cells (BMSC). Moreover, Dp1 knock-down using specific sh-RNA decreased MM cell growth in 5 MM cell lines with different genetic background, with a concomitant G1 arrest and late induction of apoptosis. These data suggest a role for Dp1 in MM cell proliferation and survival and established a rationale to identify its molecular impact. We have further characterized Dp1 activity using chromatin immunoprecipitation with Dp1 or E2F1 specific antibody followed by genome wide sequencing (ChIP-Seq) to identify Dp1-binding regions in MM. We have identified 2783 exclusive Dp1 binding regions in two MM cell lines. Examination of Dp1 and E2F1 binding revealed that Dp1 co-occupies 65% of the binding sites with E2F1. The DAVID gene set enrichment analysis showed that identified genes were related to cell cycle, as well as to transcriptional and translational processes. To assess the functional consequences of Dp1 DNA binding, the ChIP-Seq data were supplemented with gene expression profile of MM1S cells following shRNA-mediated Dp1 and E2F knock-downs. Integrated analysis incorporating ChIP-seq and expression data identified Dp1 response program in MM. 805 (46%) of 1752 differentially expressed genes also have binding sites for Dp1 and likely are direct transcriptional targets of Dp1 in MM. Enrichment analysis of direct targets revealed that the most strongly enriched pathways for both Dp1 and E2F1 genes combined were related to the cell cycle, especially DNA replication, repair, and metabolism. Interestingly, pathway analysis identified ‘‘regulation of RNA metabolic processes’’ (40 target genes), ‘‘RNA processing’’ (93 target genes) ‘‘RNA splicing’’ (95 genes), and ‘‘RNA binding’’ (53 genes) as statistically significant RNA-related categories enriched among Dp1 target genes, suggests role of Dp1 in RNA splicing. Based on our previous data showing that dysregulated alternate splicing (AS) has significant impact on overall clinical outcome MM, we evaluated the expression of Dp1-modulated splicing factors in our clinically annotated cohort of MM patients and 5 normal PCs. We identified 23 SFs upregulated in MM compared to normal plasma cells. Importantly, the increased expression of 12 of these SFs was linked with poor prognosis in this cohort of myeloma patients. Our data show for the first time that SFs are upregulated in myeloma and link to clinical outcome. To evaluate the impact of Dp1 on alternate splicing (AS), we performed genome-wide analysis of alternate splicing in total RNA from Dp1 silenced MM1S cells using Human Exon1 ST arrays. Splicing profiles showed that Dp1 knock down causes widespread changes in AS. We have identified 3683 genes whose one exon has splicing index more than 1.5 in in shDP1 compared to control pLKO.1-transduced MM1S cells, suggesting impact of Dp1 silencing on alternate splicing. We are now evaluating impact of a peptide able to disrupt Dp1-E2F1 binding with consequent effect on MM cell growth and alternate splicing. In conclusion, our investigation showed that the Dp1/E2F1 signaling pathway plays significant role in myeloma and can directly activate transcription of specific SFs with effect on alternate splicing and potential functional, clinical and therapeutic implications in myeloma. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 218 (3) ◽  
pp. 820-838 ◽  
Author(s):  
Colin E. Delaney ◽  
Stephen P. Methot ◽  
Micol Guidi ◽  
Iskra Katic ◽  
Susan M. Gasser ◽  
...  

The segregation of the genome into accessible euchromatin and histone H3K9-methylated heterochromatin helps silence repetitive elements and tissue-specific genes. In Caenorhabditis elegans, MET-2, the homologue of mammalian SETDB1, catalyzes H3K9me1 and me2, yet like SETDB1, its regulation is enigmatic. Contrary to the cytosolic enrichment of overexpressed MET-2, we show that endogenous MET-2 is nuclear throughout development, forming perinuclear foci in a cell cycle–dependent manner. Mass spectrometry identified two cofactors that bind MET-2: LIN-65, a highly unstructured protein, and ARLE-14, a conserved GTPase effector. All three factors colocalize in heterochromatic foci. Ablation of lin-65, but not arle-14, mislocalizes and destabilizes MET-2, resulting in decreased H3K9 dimethylation, dispersion of heterochromatic foci, and derepression of MET-2 targets. Mutation of met-2 or lin-65 also disrupts the perinuclear anchoring of genomic heterochromatin. Loss of LIN-65, like that of MET-2, compromises temperature stress resistance and germline integrity, which are both linked to promiscuous repeat transcription and gene expression.


2001 ◽  
Vol 153 (2) ◽  
pp. 283-294 ◽  
Author(s):  
Steven T. Suhr ◽  
Marie-Claude Senut ◽  
Julian P. Whitelegge ◽  
Kym F. Faull ◽  
Denise B. Cuizon ◽  
...  

Proteins with expanded polyglutamine (polyQ) tracts have been linked to neurodegenerative diseases. One common characteristic of expanded-polyQ expression is the formation of intracellular aggregates (IAs). IAs purified from polyQ-expressing cells were dissociated and studied by protein blot assay and mass spectrometry to determine the identity, condition, and relative level of several proteins sequestered within aggregates. Most of the sequestered proteins comigrated with bands from control extracts, indicating that the sequestered proteins were intact and not irreversibly bound to the polyQ polymer. Among the proteins found sequestered at relatively high levels in purified IAs were ubiquitin, the cell cycle–regulating proteins p53 and mdm-2, HSP70, the global transcriptional regulator Tata-binding protein/TFIID, cytoskeleton proteins actin and 68-kD neurofilament, and proteins of the nuclear pore complex. These data reveal that IAs are highly complex structures with a multiplicity of contributing proteins.


2019 ◽  
Vol 12 (2) ◽  
pp. 147-159 ◽  
Author(s):  
Elena Taverna ◽  
Maida De Bortoli ◽  
Elisa Maffioli ◽  
Cristina Corno ◽  
Emilio Ciusani ◽  
...  

Objective: Marycin is a porphyrin-type compound synthetically modified to spontaneously release fluorescence. This study is aimed at understanding possible mechanisms that could account for the antiproliferative effects observed in marycin. A proteomic approach was used to identify molecular effects. The proteome of proliferating MDA-MB-231 breast cancer cells was compared with that of marycin-treated cells. Methods: Label-free proteomic analysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to reveal changes in protein expression and fluorescence microscopy and flow cytometry were used to detect subcellular organelle dysfunctions. Results: The bioinformatic analysis indicated an enhancement of the expression of proteins remodeling RNA splicing and more in general, of RNA metabolism. Marycin did not localize into the mitochondria and did not produce a dramatic increase of ROS levels in MDA-MB-231 cells. Marycin stained organelles probably peroxisomes. Conclusions: The results could support the possibility that the peroxisomes are involved in cell response to marycin.


2016 ◽  
Vol 01 (03) ◽  
pp. 201-208 ◽  
Author(s):  
Malini Krishnamoorthy ◽  
Brian Gerwe ◽  
Jamie Heimburg-Molinaro ◽  
Rachel Nash ◽  
Jagan Arumugham ◽  
...  

Author(s):  
Tara A Shrout

Titin is the largest known protein in the human body, and forms the backbone of all striated muscle sarcomeres. The elastic nature of titin is an important component of muscle compliance and functionality. A significant amount of energy is expended to synthesize titin, thus we postulate that titin gene expression is under strict regulatory control in order to conserve cellular resources. In general, gene expression is mediated in part by post-transcriptional control elements located within the 5’ and 3’ untranslated regions (UTRs) of mature mRNA. The 3’UTR in particular contains structural features that affect binding capacity to other RNA components, such as MicroRNA, which control mRNA localization, translation, and degradation. The degree and significance of the regulatory effects mediated by two determined variants of titin’s 3’ UTR were evaluated in Neonatal Rat Ventricular Myocyte and Human Embryonic Kidney cell lines. Recombinant plasmids to transfect these cells lines were engineered by insertion of the variant titin 3’UTR 431- and 1047-base pairs sequences into luciferase reporter vectors. Expression due to an unaltered reporter vector served as the control. Quantitative changes in luciferase activity due to the recombinants proportionally represented the effect titin’s respective 3’UTR conferred on downstream post-transcriptional expression relative to the control. The effect due to titin’s shorter 3’UTR sequence was inconclusive; however, results illustrated that titin’s longer 3’UTR sequence caused a 35 percent decrease in protein expression. Secondary structural analysis of the two sequences revealed differential folding patterns that affect the stability and degree of MicroRNA-binding within titin’s variant 3’UTR sequences.


Sign in / Sign up

Export Citation Format

Share Document