scholarly journals Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Cancer and Immunotherapy

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1170
Author(s):  
Mithunah Krishnamoorthy ◽  
Lara Gerhardt ◽  
Saman Maleki Maleki Vareki

The primary function of myeloid cells is to protect the host from infections. However, during cancer progression or states of chronic inflammation, these cells develop into myeloid-derived suppressor cells (MDSCs) that play a prominent role in suppressing anti-tumor immunity. Overcoming the suppressive effects of MDSCs is a major hurdle in cancer immunotherapy. Therefore, understanding the mechanisms by which MDSCs promote tumor growth is essential for improving current immunotherapies and developing new ones. This review explores mechanisms by which MDSCs suppress T-cell immunity and how this impacts the efficacy of commonly used immunotherapies.

2021 ◽  
Vol 6 (59) ◽  
pp. eabh2383
Author(s):  
Xi Wang ◽  
Bo Li ◽  
Yu Jeong Kim ◽  
Yu-Chen Wang ◽  
Zhe Li ◽  
...  

Monoamine oxidase A (MAO-A) is an enzyme best known for its function in the brain, where it breaks down neurotransmitters and thereby influences mood and behavior. Small-molecule MAO inhibitors (MAOIs) have been developed and are clinically used for treating depression and other neurological disorders. However, the involvement of MAO-A in antitumor immunity has not been reported. Here, we observed induction of the Maoa gene in tumor-infiltrating immune cells. Maoa knockout mice exhibited enhanced antitumor T cell immunity and suppressed tumor growth. MAOI treatment significantly suppressed tumor growth in preclinical mouse syngeneic and human xenograft tumor models in a T cell–dependent manner. Combining MAOI and anti–PD-1 treatments generated synergistic tumor suppression effects. Clinical data correlation studies associated intratumoral MAOA expression with T cell dysfunction and decreased patient survival in a broad range of cancers. We further demonstrated that MAO-A restrains antitumor T cell immunity through controlling intratumoral T cell autocrine serotonin signaling. Together, these data identify MAO-A as an immune checkpoint and support repurposing MAOI antidepressants for cancer immunotherapy.


2018 ◽  
Vol 2 (S1) ◽  
pp. 15-16
Author(s):  
Jonathan B. Mitchem ◽  
Yue Guan ◽  
Mark Daniels ◽  
Emma Teixeiro

OBJECTIVES/SPECIFIC AIMS: Despite significant advances in screening and treatment, colorectal cancer is the second leading cancer killer in the United States today. Some of the most promising recent developments in cancer therapy have come from immune-based therapy. Immune-based therapy, however, has shown limited utility in patients with colorectal cancer. Studies have previously shown that certain chemotherapy regimens may be more effective in combination with immune-based therapy due to induction of inflammation in the tumor microenvironment. In this study, we sought to determine how standard chemotherapy (FOLFOX) affects the generation of antigen-specific anti-tumor immunity in colorectal cancer. METHODS/STUDY POPULATION: To determine the how antigen-specific immunity and T cell responses are affected by FOLFOX, we utilized a model antigen expressing murine colon cancer cell line syngeneic to C57BL/6 (MC38-CEA). Treatment was initiated when tumor size reached 50 mm2. Mice were treated with either vehicle (PBS), 5-Fluorouracil (5-FU), Oxaliplatin, or combination (FOLFOX). Antigen-specific cytotoxic T cell (tet+Tc) were detected using Db-CEA-tetramer obtained from the NIH-tetramer core facility. Flow cytometry was performed for phenotypic analysis and tetramer positivity. Tumor growth was measured using standard caliper measurements. Statistical analysis was performed using t-test for continuous variables and ANOVA was used when comparing multiple groups. Statistical analysis was performed using SPSS. All arms were completed with n=3–7. RESULTS/ANTICIPATED RESULTS: To determine how systemic treatment with chemotherapy affects cytotoxic T cell development (Tc), we established that we could detect antigen-specific Tc (tet+Tc) in the spleen, tumor, and draining lymph nodes of tumor-bearing mice. After establishing that the system worked appropriately, tumor-bearing mice were treated with different chemotherapy regimens and tumor growth was monitored. As expected, the combination of FOLFOX was significantly better than either drug individually (2-way ANOVA, p<0.01). FOLFOX therapy also showed a significant (p<0.05) increase in the number of tumor-associated tet+Tc, and tet+Tc expressing phenotypic markers of effector (Te) and resident memory (Trm) subsets. Tumor-associated tet+Tc highly expressed PD-1 (>50%); however, this was not significantly different between treatment or vehicle arms. Since 5-FU, one component of FOLFOX has previously shown a selective reduction of myeloid-derived suppressor cells, we also investigated the myeloid compartment. There were no significant differences in conventional or plasmacytoid dendritic cells, myeloid-derived suppressor cells, or tumor-associated macrophages. DISCUSSION/SIGNIFICANCE OF IMPACT: The future of cancer care involves multi-modality care tailored to patients. To more effectively combine therapy it is critical that we understand how currently utilized therapy works. In this study, we show that the primary chemotherapy regimen utilized in colorectal cancer increases tumor-associated antigen-specific cytotoxic T cells and the majority of these cells are PD-1 positive. This suggests that FOLFOX may work in concert with immune-based therapy when selected appropriately. Further study is warranted to determine optimal combination therapy and ways to maximize anti-tumor immunity in order to improve the treatment of patients with this deadly disease.


Immunity ◽  
2014 ◽  
Vol 41 (5) ◽  
pp. 762-775 ◽  
Author(s):  
Yuliya Skabytska ◽  
Florian Wölbing ◽  
Claudia Günther ◽  
Martin Köberle ◽  
Susanne Kaesler ◽  
...  

2013 ◽  
Vol 210 (11) ◽  
pp. 2257-2271 ◽  
Author(s):  
Aude-Hélène Capietto ◽  
Seokho Kim ◽  
Dominic E. Sanford ◽  
David C. Linehan ◽  
Masaki Hikida ◽  
...  

Myeloid-derived suppressor cells (MDSCs) favor tumor promotion, mainly by suppressing antitumor T cell responses in many cancers. Although the mechanism of T cell inhibition is established, the pathways leading to MDSC accumulation in bone marrow and secondary lymphoid organs of tumor-bearing hosts remain unclear. We demonstrate that down-regulation of PLCγ2 signaling in MDSCs is responsible for their aberrant expansion during tumor progression. PLCγ2−/− MDSCs show stronger immune-suppressive activity against CD8+ T cells than WT MDSCs and potently promote tumor growth when adoptively transferred into WT mice. Mechanistically, PLCγ2−/− MDSCs display reduced β-catenin levels, and restoration of β-catenin expression decreases their expansion and tumor growth. Consistent with a negative role for β-catenin in MDSCs, its deletion in the myeloid population leads to MDSC accumulation and supports tumor progression, whereas expression of β-catenin constitutively active reduces MDSC numbers and protects from tumor growth. Further emphasizing the clinical relevance of these findings, MDSCs isolated from pancreatic cancer patients show reduced p-PLCγ2 and β-catenin levels compared with healthy controls, similar to tumor-bearing mice. Thus, for the first time, we demonstrate that down-regulation of PLCγ2–β-catenin pathway occurs in mice and humans and leads to MDSC-mediated tumor expansion, raising concerns about the efficacy of systemic β-catenin blockade as anti-cancer therapy.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A574-A574
Author(s):  
Ellen Duong ◽  
Timothy Fessenden ◽  
Arjun Bhutkar ◽  
Stefani Spranger

BackgroundCytotoxic (CD8+) T-cells are required for tumor eradication and durable anti-tumor immunity.1 The induction of tumor-reactive CD8+ T-cells is predominately attributed to a subset of dendritic cells (DC) called Batf3-driven DC1, given their robust ability to cross-present antigens for T-cell priming and their role in effector T-cell recruitment.2–4 Presence of the DC1 signature in tumors correlates with improved survival and response to immunotherapies.5–7 Yet, most tumors with a DC1 infiltrate still progress, suggesting that while DC1 can initiate tumor-reactive CD8+ T-cell responses, they are unable to sustain them. Therefore, there is a critical need to identify and engage additional stimulatory DC subsets to strengthen anti-tumor immunity and boost immunotherapy responses.MethodsTo identify DC subsets that drive poly-functional CD8+ T-cell responses, we compared the DC infiltrate of a spontaneously regressing tumor with a progressing tumor. Multicolor flow immunophenotyping and single-cell RNA-sequencing were used to profile the DC compartment of both tumors. IFNγ-ELISpot was performed on splenocytes to assess for systemic tumor-reactive T-cell responses. Sorted DC subsets from tumors were co-cultured with TCR-transgenic T-cells ex vivo to evaluate their stimulatory capacity. Cross-dressing (in vivo/ex vivo) was assayed by staining for transfer of tumor-derived H-2b MHC complexes to Balb/c DC, which express the H-2d haplotype. Protective systemic immunity was assayed via contralateral flank tumor outgrowth experiments.ResultsRegressor tumors were infiltrated with more cross-presenting DC1 than progressor tumors. However, tumor-reactive CD8+ T-cell responses and tumor control were preserved in Batf3-/- mice lacking DC1, indicating that anti-tumor immune responses could be induced independent of DC1. Through functional assays, we established that anti-tumor immunity against regressor tumors required CD11c+ DC and cGAS/STING-independent type-I-interferon-sensing. Single-cell RNA-sequencing of the immune infiltrate of regressor tumors revealed a novel CD11b+ DC subset expressing an interferon-stimulated gene signature (ISG+ DC). Flow studies demonstrated that ISG+ DC were more enriched in regressor tumors than progressor tumors. We showed that ISG+ DC could activate CD8+ T-cells by cross-dressing with tumor-derived peptide-MHC complexes, thereby bypassing the requirement for cross-presentation to initiate CD8+ T-cell-driven immunity. ISG+ DC highly expressed cytosolic dsRNA sensors (RIG-I/MDA5) and could be therapeutically harnessed by exogenous addition of a dsRNA analog to drive protective CD8+ T-cell responses in DC1-deficient mice.ConclusionsThe DC infiltrate in tumors can dictate the strength of anti-tumor immunity. Harnessing multiple stimulatory DC subsets, such as cross-presenting DC1 and cross-dressing ISG+ DC, provides a therapeutic opportunity to enhance anti-tumor immunity and increase immunotherapy responses.ReferencesFridman WH, et al. The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer 2012;12(4): p. 298–306.Hildner K, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008;322(5904):p. 1097–100.Spranger S, et al. Tumor-Residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 2017;31(5):p. 711–723.e4.Roberts, EW, et al., Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 2016;30(2): p. 324–336.Broz ML, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 2014;26(5): p. 638–52.Salmon H., et al., Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity, 2016. 44(4): p. 924–38.Sánchez-Paulete AR, et al., Cancer immunotherapy with immunomodulatory anti-CD137 and Anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov, 2016;6(1):p. 71–9.


2015 ◽  
Author(s):  
Tatiana A. Karakasheva ◽  
Todd J. Waldron ◽  
Evgeniy Eruslanov ◽  
Ju-Seog Lee ◽  
Shaun O'Brien ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 5150
Author(s):  
Nehal Gupta ◽  
Shreyas Gaikwad ◽  
Itishree Kaushik ◽  
Stephen E. Wright ◽  
Maciej M. Markiewski ◽  
...  

A major contributing factor in triple-negative breast cancer progression is its ability to evade immune surveillance. One mechanism for this immunosuppression is through ribosomal protein S19 (RPS19), which facilitates myeloid-derived suppressor cells (MDSCs) recruitment in tumors, which generate cytokines TGF-β and IL-10 and induce regulatory T cells (Tregs), all of which are immunosuppressive and enhance tumor progression. Hence, enhancing the immune system in breast tumors could be a strategy for anticancer therapeutics. The present study evaluated the immune response of atovaquone, an antiprotozoal drug, in three independent breast-tumor models. Our results demonstrated that oral administration of atovaquone reduced HCC1806, CI66 and 4T1 paclitaxel-resistant (4T1-PR) breast-tumor growth by 45%, 70% and 42%, respectively. MDSCs, TGF-β, IL-10 and Tregs of blood and tumors were analyzed from all of these in vivo models. Our results demonstrated that atovaquone treatment in mice bearing HCC1806 tumors reduced MDSCs from tumor and blood by 70% and 30%, respectively. We also observed a 25% reduction in tumor MDSCs in atovaquone-treated mice bearing CI66 and 4T1-PR tumors. In addition, a decrease in TGF-β and IL-10 in tumor lysates was observed in atovaquone-treated mice with a reduction in tumor Tregs. Moreover, a significant reduction in the expression of RPS19 was found in tumors treated with atovaquone.


Sign in / Sign up

Export Citation Format

Share Document