scholarly journals Nano-Strategies Targeting the Integrin αvβ3 Network for Cancer Therapy

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1684
Author(s):  
Tsai-Mu Cheng ◽  
Wong-Jin Chang ◽  
Hsiu-Yi Chu ◽  
Roberto De Luca ◽  
Jens Z. Pedersen ◽  
...  

Integrin αvβ3, a cell surface receptor, participates in signaling transduction pathways in cancer cell proliferation and metastasis. Several ligands bind to integrin αvβ3 to regulate proliferation and metastasis in cancer cells. Crosstalk between the integrin and other signal transduction pathways also plays an important role in modulating cancer proliferation. Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) activates the downstream integrin FAK to stimulate biological activities including cancer proliferation and metastasis. Blockage of signals related to integrin αvβ3 was shown to be a promising target for cancer therapies. 3,3′,5,5′-tetraiodothyroacetic acid (tetrac) completely binds to the integrin with the thyroid hormone to suppress cancer proliferation. The (E)-stilbene analog, resveratrol, also binds to integrin αvβ3 to inhibit cancer growth. Recently, nanotechnologies have been used in the biomedical field for detection and therapeutic purposes. In the current review, we show and evaluate the potentiation of the nanomaterial carrier RGD peptide, derivatives of PLGA-tetrac (NDAT), and nanoresveratrol targeting integrin αvβ3 in cancer therapies.

Endocrinology ◽  
2005 ◽  
Vol 146 (7) ◽  
pp. 2864-2871 ◽  
Author(s):  
Joel J. Bergh ◽  
Hung-Yun Lin ◽  
Lawrence Lansing ◽  
Seema N. Mohamed ◽  
Faith B. Davis ◽  
...  

Abstract Integrin αVβ3 is a heterodimeric plasma membrane protein whose several extracellular matrix protein ligands contain an RGD recognition sequence. This study identifies integrin αVβ3 as a cell surface receptor for thyroid hormone [l-T4 (T4)] and as the initiation site for T4-induced activation of intracellular signaling cascades. Integrin αVβ3 dissociably binds radiolabeled T4 with high affinity, and this binding is displaced by tetraiodothyroacetic acid, αVβ3 antibodies, and an integrin RGD recognition site peptide. CV-1 cells lack nuclear thyroid hormone receptor, but express plasma membrane αVβ3; treatment of these cells with physiological concentrations of T4 activates the MAPK pathway, an effect inhibited by tetraiodothyroacetic acid, RGD peptide, and αVβ3 antibodies. Inhibitors of T4 binding to the integrin also block the MAPK-mediated proangiogenic action of T4. T4-induced phosphorylation of MAPK is inhibited by small interfering RNA knockdown of αV and β3. These findings suggest that T4 binds to αVβ3 near the RGD recognition site and show that hormone-binding to αVβ3 has physiological consequences.


2002 ◽  
Vol 362 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Manickavasagam SUNDARAM ◽  
Daan M. F. van AALTEN ◽  
John B. C. FINDLAY ◽  
Asipu SIVAPRASADARAO

Members of the lipocalin superfamily share a common structural fold, but differ from each other with respect to the molecules with which they interact. They all contain eight β-strands (A—H) that fold to form a well-defined β-barrel, which harbours a binding pocket for hydrophobic ligands. These strands are connected by loops that vary in size and structure and make up the closed and open ends of the pocket. In addition to binding ligands, some members of the family interact with other macromolecules, the specificity of which is thought to be associated with the variable loop regions. Here, we have investigated whether the macromolecular-recognition properties can be transferred from one member of the family to another. For this, we chose the prototypical lipocalin, the plasma retinol-binding protein (RBP) and its close structural homologue the epididymal retinoic acid-binding protein (ERABP). RBP exhibits three molecular-recognition properties: it binds to retinol, to transthyretin (TTR) and to a cell-surface receptor. ERABP binds retinoic acid, but whether it interacts with other macromolecules is not known. Here, we show that ERABP does not bind to TTR and the RBP receptor, but when the loops of RBP near the open end of the pocket (L-1, L-2 and L-3, connecting β-strands A—B, C—D and E—F, respectively) were substituted into the corresponding regions of ERABP, the resulting chimaera acquired the ability to bind TTR and the receptor. L-2 and L-3 were found to be the major determinants of the receptor- and TTR-binding specificities respectively. Thus we demonstrate that lipocalins serve as excellent scaffolds for engineering novel biological functions.


2021 ◽  
Author(s):  
Amine Driouchi ◽  
Scott Gray-Owen ◽  
Christopher M Yip

Mapping the self-organization and spatial distribution of membrane proteins is key to understanding their function. We report here on a correlated STORM/homoFRET imaging approach for resolving the nanoscale distribution and oligomeric state of membrane proteins. Live cell homoFRET imaging of CEACAM1, a cell-surface receptor known to exist in a complex equilibrium between monomer and dimer/oligomer states, revealed highly heterogenous diffraction-limited structures on the surface of HeLa cells. Correlated super-resolved STORM imaging revealed that these structures comprised a complex mixture and spatial distribution of self-associated CEACAM1 molecules. This correlated approach provides a compelling strategy for addressing challenging questions about the interplay between membrane protein concentration, distribution, interaction, clustering, and function.


2006 ◽  
Vol 14 (7S_Part_27) ◽  
pp. P1453-P1454
Author(s):  
Nicola J. Corbett ◽  
Kate Fisher ◽  
Helen A. Rowland ◽  
Alys C. Jones ◽  
Nigel M. Hooper

2008 ◽  
Vol 76 (7) ◽  
pp. 2862-2871 ◽  
Author(s):  
Xi Na ◽  
Ho Kim ◽  
Mary P. Moyer ◽  
Charalabos Pothoulakis ◽  
J. Thomas LaMont

ABSTRACT Clostridium difficile toxin A (TxA), a key mediator of antibiotic-associated colitis, requires binding to a cell surface receptor prior to internalization. Our aim was to identify novel plasma membrane TxA binding proteins on human colonocytes. TxA was coupled with biotin and cross-linked to the surface of HT29 human colonic epithelial cells. The main colonocyte binding protein for TxA was identified as glycoprotein 96 (gp96) by coimmunoprecipitation and mass spectrum analysis. gp96 is a member of the heat shock protein family, which is expressed on human colonocyte apical membranes as well as in the cytoplasm. TxA binding to gp96 was confirmed by fluorescence immunostaining and in vitro coimmunoprecipitation. Following TxA binding, the TxA-gp96 complex was translocated from the cell membrane to the cytoplasm. Pretreatment with gp96 antibody decreased TxA binding to colonocytes and inhibited TxA-induced cell rounding. Small interfering RNA directed against gp96 reduced gp96 expression and cytotoxicity in colonocytes. TxA-induced inflammatory signaling via p38 and apoptosis as measured by activation of BAK (Bcl-2 homologous antagonist/killer) and DNA fragmentation were decreased in gp96-deficient B cells. We conclude that human colonocyte gp96 serves as a plasma membrane binding protein that enhances cellular entry of TxA, participates in cellular signaling events in the inflammatory cascade, and facilitates cytotoxicity.


2008 ◽  
Vol 20 (9) ◽  
pp. 30
Author(s):  
M. Gamat ◽  
M. B. Renfree ◽  
A. J. Pask ◽  
G. Shaw

Androgens induce the differentiation of the urogenital sinus (UGS) to form a prostate. An early marker of this response is upregulation of the transcription factor Nkx3.1 in the urogenital epithelium in the precursors of prostatic buds. In tammars, prostate differentiation begins ~3 weeks after birth and after the time the testis starts to secrete androgens, and 2 weeks after androgen stimulated Wolffian duct differentiation. The reason for this delay in prostate differentiation is unexplained. Androgen receptors are present in the UGS, and the potent androgen, androstanediol, induces prostatic development in females. Whilst androgens may diffuse into cells by across the cell membrane, there is increasing evidence that steroids are also internalised actively via the cell-surface transport molecule Megalin. We are exploring the possibility that the delay may be related to the establishment of a Megalin-mediated pathway. Megalin is a cell surface receptor expressed on epithelia and mediates the endocytosis of a wide range of ligands, including SHBG-bound sex steroids. Megalin action is regulated by Receptor Associated Protein (RAP), which acts as an antagonist to Megalin action. This study cloned partial sequences of Megalin, RAP and Nkx3.1 and examined their expression in the developing urogenital sinus of the tammar wallaby using RT–PCR. The cellular distribution of Megalin protein in the developing UGS was examined using immunohistochemistry. Megalin, RAP and Nkx3.1 in the tammar were all highly conserved with eutherian orthologueues. Megalin and Nkx3.1 transcripts were detected in the liver, kidney, ovary, testis and developing urogenital sinus of male and female tammars. In the developing UGS of the tammar, there was strong staining for Megalin protein in the urogenital epithelium with some diffuse staining in the surrounding mesenchyme. Together, these results suggest that Megalin could be a key gene in the mediation of androgen action in prostatic development in the tammar wallaby.


1986 ◽  
Vol 51 (0) ◽  
pp. 703-711 ◽  
Author(s):  
J.S. McDougal ◽  
P.J. Maddon ◽  
A.G. Dalgleish ◽  
P.R. Clapham ◽  
D.R. Littman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document