scholarly journals Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1775
Author(s):  
Pooja S. Salvi ◽  
Robert A. Cowles

The microbial metabolite butyrate serves as a link between the intestinal microbiome and epithelium. The monocarboxylate transporters MCT1 and SMCT1 are the predominant means of butyrate transport from the intestinal lumen to epithelial cytoplasm, where the molecule undergoes rapid β-oxidation to generate cellular fuel. However, not all epithelial cells metabolize butyrate equally. Undifferentiated colonocytes, including neoplastic cells and intestinal stem cells at the epithelial crypt base preferentially utilize glucose over butyrate for cellular fuel. This divergent metabolic conditioning is central to the phenomenon known as “butyrate paradox”, in which butyrate induces contradictory effects on epithelial proliferation in undifferentiated and differentiated colonocytes. There is evidence that accumulation of butyrate in epithelial cells results in histone modification and altered transcriptional activation that halts cell cycle progression. This manifests in the apparent protective effect of butyrate against colonic neoplasia. A corollary to this process is butyrate-induced inhibition of intestinal stem cells. Yet, emerging research has illustrated that the evolution of the crypt, along with butyrate-producing bacteria in the intestine, serve to protect crypt base stem cells from butyrate’s anti-proliferative effects. Butyrate also regulates epithelial inflammation and tolerance to antigens, through production of anti-inflammatory cytokines and induction of tolerogenic dendritic cells. The role of butyrate in the pathogenesis and treatment of intestinal neoplasia, inflammatory bowel disease and malabsorptive states is evolving, and holds promise for the potential translation of butyrate’s cellular function into clinical therapies.


2008 ◽  
Vol 8 ◽  
pp. 1168-1176 ◽  
Author(s):  
Laren Becker ◽  
Qin Huang ◽  
Hiroshi Mashimo

Lgr5 has recently been identified as a murine marker of intestinal stem cells. Its expression has not been well characterized in human gastrointestinal tissues, but has been reported in certain cancers. With the increasing appreciation for the role of cancer stem cells or tumor-initiating cells in certain tumors, we sought to explore the expression of Lgr5 in normal and premalignant human gastrointestinal tissues. Using standard immunostaining, we compared expression of Lgr5 in normal colon and small intestine vs. small intestinal and colonic adenomas and Barrett's esophagus. In the normal tissue, Lgr5 was expressed in the expected stem cell niche, at the base of crypts, as seen in mice. However, in premalignant lesions, Lgr5+cells were not restricted to the crypt base. Additionally, their overall numbers were increased. In colonic adenomas, Lgr5+cells were commonly found clustered at the luminal surface and rarely at the crypt base. Finally, we compared immunostaining of Lgr5 with that of CD133, a previously characterized marker for tumor-initiating cells in colon cancer, and found that they identified distinct subpopulations of cells that were in close proximity, but did not costain. Our findings suggest that (1) Lgr5 is a potential marker of intestinal stem cells in humans and (2) loss of restriction to the stem cell niche is an early event in the premalignant transformation of stem cells and may play a role in carcinogenesis.



Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 560
Author(s):  
Yoojin Seo ◽  
So-Yeon Park ◽  
Hyung-Sik Kim ◽  
Jeong-Seok Nam

Despite endogenous insults such as mechanical stress and danger signals derived from the microbiome, the intestine can maintain its homeostatic condition through continuous self-renewal of the crypt–villus axis. This extraordinarily rapid turnover of intestinal epithelium, known to be 3 to 5 days, can be achieved by dynamic regulation of intestinal stem cells (ISCs). The crypt base-located leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5+) ISCs maintain intestinal integrity in the steady state. Under severe damage leading to the loss of conventional ISCs, quiescent stem cells and even differentiated cells can be reactivated into stem-cell-like cells with multi-potency and contribute to the reconstruction of the intestinal epithelium. This process requires fine-tuning of the various signaling pathways, including the Hippo–YAP system. In this review, we summarize recent advances in understanding the correlation between Hippo–YAP signaling and intestinal homeostasis, repair, and tumorigenesis, focusing specifically on ISC regulation.



2012 ◽  
Vol 303 (4) ◽  
pp. G443-G452 ◽  
Author(s):  
Jeffrey B. King ◽  
Richard J. von Furstenberg ◽  
Brian J. Smith ◽  
Kirk K. McNaughton ◽  
Joseph A. Galanko ◽  
...  

A growing body of evidence has implicated CD24, a cell-surface protein, as a marker of colorectal cancer stem cells and target for antitumor therapy, although its presence in normal colonic epithelium has not been fully characterized. Previously, our group showed that CD24-based cell sorting can be used to isolate a fraction of murine small intestinal epithelial cells enriched in actively cycling stem cells. Similarly, we hypothesized that CD24-based isolation of colonic epithelial cells would generate a fraction enriched in actively cycling colonic epithelial stem cells (CESCs). Immunohistochemistry performed on mouse colonic tissue showed CD24 expression in the bottom half of proximal colon crypts and the crypt base in the distal colon. This pattern of distribution was similar to enhanced green fluorescent protein (EGFP) expression in Lgr5-EGFP mice. Areas expressing CD24 contained actively proliferating cells as determined by ethynyl deoxyuridine (EdU) incorporation, with a distinct difference between the proximal colon, where EdU-labeled cells were most frequent in the midcrypt, and the distal colon, where they were primarily at the crypt base. Flow cytometric analyses of single epithelial cells, identified by epithelial cell adhesion molecule (EpCAM) positivity, from mouse colon revealed an actively cycling CD24+ fraction that contained the majority of Lgr5-EGFP+ putative CESCs. Transcript analysis by quantitative RT-PCR confirmed enrichment of active CESC markers [leucine-rich-repeat-containing G protein-coupled receptor 5 (Lgr5), ephrin type B receptor 2 (EphB2), and CD166] in the CD24+EpCAM+ fraction but also showed enrichment of quiescent CESC markers [leucine-rich repeats and immunoglobin domains (Lrig), doublecortin and calmodulin kinase-like 1 (DCAMKL-1), and murine telomerase reverse transcriptase (mTert)]. We conclude that CD24-based sorting in wild-type mice isolates a colonic epithelial fraction highly enriched in actively cycling and quiescent putative CESCs. Furthermore, the presence of CD24 expression in normal colonic epithelium may have important implications for the use of anti-CD24-based colorectal cancer therapies.



2019 ◽  
Vol 20 (7) ◽  
pp. 690-695
Author(s):  
Xi Chen ◽  
Zehong Yang ◽  
Huiling Hu ◽  
Wentao Duan ◽  
Aiping Wang ◽  
...  

Weaning is a stressful event associated with gastrointestinal disorders and increased disease susceptibility. Many studies have reported the changes that happened in the gut of various mammals such as pigs and rats after weaning. These findings suggest that the development of intestinal tract mainly is affected at the time of weaning through interfering in the differentiation and proliferation of intestinal stem cells. Weaning stress stimulates the rapid differentiation and proliferation of intestinal stem cells in order to adjust to changes caused by weaning, which are mainly manifested as deeper crypt depth and decreased intestine villus height. However, the accelerated cellular process may lead to an increase in the proportion of immature intestinal epithelial cells and goblet cells, which affect intestinal permeability and reduce the gut-barrier function against toxins and pathogens. This review briefly describes the effects coforticotrophin-releasing factor (CRF), epidermal growth factor (EGF) and polyamines on the differentiation and proliferation of intestinal stem cells after weaning and discusses its possible underlying regulatory mechanisms. Firstly, weaning stress activates CRF to binds its receptors, which induces proinflammatory responses and promote rapid differentiation and proliferation of intestinal stem cells to a larger fraction of immature intestinal epithelial cells and goblet cells. Secondly, the lack of EGF after weaning inhibits the expression of goblet cell maturation factors and makes it difficult for goblet cells and intestinal epithelial cells to mature. Finally, diet and endogenous synthesis lead to excessive polyamines in the intestine, which promote the proliferation of intestinal stem cells by regulating the expression of human antigen R (HuR) and other related genes at the time of weaning.





2021 ◽  
Author(s):  
Zusen Fan ◽  
Pingping Zhu ◽  
Tiankun Lu ◽  
Jiayi Wu ◽  
Xiaoxiao Zhu ◽  
...  

Abstract Lgr5+ intestinal stem cells reside within specialized niches at the crypt base and harbor self-renewal and differentiation capacities. ISCs in the crypt base are sustained by their surrounding niche for precise modulation of self-renewal and differentiation. However, how intestinal cells in the crypt niche and microbiota in enteric cavity regulates ISC stemness remains unclear. Here we show that ISCs are regulated by intestinal nerve cells and macrophage cells in the crypt niche, which are further modulated by microbiota. Enteric serotonergic neurons, along with their secreted neurotransmitter 5-HT, are required for ISC self-renewal. 5-HT activates PGE2 production in macrophages through engagement with its receptors Htr2a/3a, and PGE2 activates Wnt/β-catenin signaling of ISCs via engagement with its receptors Ep1/Ep4. Gut bacterial metabolite valeric acid promotes Tph2 expression through blocking enrichment of NuRD complex onto Tph2 promoter. Our findings reveal the complicated crosstalk between microbiota, intestinal nerve cells, intestinal immune cells and intestinal stem cells, adding a new layer for ISC regulation by niche cells and microbiota.



2019 ◽  
Author(s):  
Xiaole Sheng ◽  
Ziguang Lin ◽  
Cong Lv ◽  
Chunlei Shao ◽  
Xueyun Bi ◽  
...  

AbstractThe +4 cells in intestinal crypts are DNA damage-resistant and contribute to regeneration. However, their exact identity and the mechanism underlying +4 cell-mediated regeneration remain unclear. Using lineage tracing, we show that cells marked by an Msi1 reporter (Msi1+) are enriched at the +4 position in intestinal crypts and exhibit DNA damage resistance. Single-cell RNA sequencing reveals that the Msi1+ cells are heterogeneous with the majority being intestinal stem cells (ISCs). The DNA damage-resistant subpopulation of Msi1+ cells is characterized by low-to-negative Lgr5 expression and is more rapidly cycling than Lgr5high radio-sensitive crypt base columnar stem cells (CBCs); they enable fast repopulation of the intestinal epithelium independent of CBCs that are largely depleted after irradiation. Furthermore, relative to CBCs, Msi1+ cells preferentially produce Paneth cells during homeostasis and upon radiation repair. Together, we demonstrate that the DNA damage-resistant Msi1+ cells are rapidly cycling ISCs that maintain and regenerate the intestinal epithelium.



2011 ◽  
Vol 300 (3) ◽  
pp. G409-G417 ◽  
Author(s):  
Richard J. von Furstenberg ◽  
Ajay S. Gulati ◽  
Anand Baxi ◽  
Jason M. Doherty ◽  
Thaddeus S. Stappenbeck ◽  
...  

Intestinal stem cells (ISCs) have been studied for more than three decades; however, their isolation has remained a challenge. We hypothesized that, just as for stem cells of other tissues, one or more membrane markers would allow positive selection of ISCs by antibody-based sorting. To explore this hypothesis, microarray data of putative ISC fractions generated by side population sorting and laser capture microdissection were subjected to bioinformatic analysis to identify common membrane antigens. The microarray comparison suggested CD24 as a candidate surface marker, and immunohistochemistry showed expression of CD24 in epithelial cells of crypt bases. Flow cytometry of jejunal epithelial preparations revealed a CD24+CD45−fraction comprising ∼1% of the cells. Analysis with epithelial cell adhesion molecule and CD31 confirmed that the cell preparations were epithelial and without endothelial contamination. Cycling cells identified by prior injection with 5-ethynyl-2′-deoxyuridine were found predominantly in the CD24losubfraction. Transcript analysis by real-time RT-PCR showed this subfraction to be enriched in the ISC markers leucine-rich-repeat-containing G-protein-coupled receptor 5 (40-fold) and Bmi1 (5-fold), but also enriched in lysozyme (10-fold). Flow cytometry with anti-lysozyme antibodies demonstrated that Paneth cells comprise ∼30% of the CD24losubfraction. Additional flow analyses with leucine-rich-repeat-containing G-protein-coupled receptor 5-enhanced green fluorescent protein (EGFP) epithelium demonstrated colocalization of EGFPhiand CD24lo. In contrast, CD24 cells were negative for the quiescent ISC marker doublecortin and CaM kinase-like-1. Culture of CD24locells in Matrigel generated organoid structures, which included all four epithelial lineages, thus giving functional evidence for the presence of ISCs. We conclude that the CD24lofraction of jejunal epithelium is highly enriched with cycling ISCs. This isolation method should be useful to many investigators in the field to advance both the basic understanding of ISC biology and the therapeutic applications of ISCs.



2014 ◽  
Vol 454 (4) ◽  
pp. 493-499 ◽  
Author(s):  
Nobukatsu Horita ◽  
Kiichiro Tsuchiya ◽  
Ryohei Hayashi ◽  
Keita Fukushima ◽  
Shuji Hibiya ◽  
...  


2019 ◽  
Vol 116 (5) ◽  
pp. 1704-1713 ◽  
Author(s):  
Yukiko Hiramatsu ◽  
Akihisa Fukuda ◽  
Satoshi Ogawa ◽  
Norihiro Goto ◽  
Kozo Ikuta ◽  
...  

Inactivating mutations of Arid1a, a subunit of the Switch/sucrose nonfermentable chromatin remodeling complex, have been reported in multiple human cancers. Intestinal deletion of Arid1a has been reported to induce colorectal cancer in mice; however, its functional role in intestinal homeostasis remains unclear. We investigated the functional role of Arid1a in intestinal homeostasis in mice. We found that intestinal deletion of Arid1a results in loss of intestinal stem cells (ISCs), decreased Paneth and goblet cells, disorganized crypt-villous structures, and increased apoptosis in adult mice. Spheroids did not develop from intestinal epithelial cells deficient for Arid1a. Lineage-tracing experiments revealed that Arid1a deletion in Lgr5+ ISCs leads to impaired self-renewal of Lgr5+ ISCs but does not perturb intestinal homeostasis. The Wnt signaling pathway, including Wnt agonists, receptors, and target genes, was strikingly down-regulated in Arid1a-deficient intestines. We found that Arid1a directly binds to the Sox9 promoter to support its expression. Remarkably, overexpression of Sox9 in intestinal epithelial cells abrogated the above phenotypes, although Sox9 overexpression in intestinal epithelial cells did not restore the expression levels of Wnt agonist and receptor genes. Furthermore, Sox9 overexpression permitted development of spheroids from Arid1a-deficient intestinal epithelial cells. In addition, deletion of Arid1a concomitant with Sox9 overexpression in Lgr5+ ISCs restores self-renewal in Arid1a-deleted Lgr5+ ISCs. These results indicate that Arid1a is indispensable for the maintenance of ISCs and intestinal homeostasis in mice. Mechanistically, this is mainly mediated by Sox9. Our data provide insights into the molecular mechanisms underlying maintenance of ISCs and intestinal homeostasis.



Sign in / Sign up

Export Citation Format

Share Document