scholarly journals Early Drosophila Oogenesis: A Tale of Centriolar Asymmetry

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1997
Author(s):  
Maria Giovanna Riparbelli ◽  
Veronica Persico ◽  
Giuliano Callaini

Among the morphological processes that characterize the early stages of Drosophila oogenesis, the dynamic of the centrioles deserves particular attention. We re-examined the architecture and the distribution of the centrioles within the germarium and early stages of the vitellarium. We found that most of the germ cell centrioles diverge from the canonical model and display notable variations in size. Moreover, duplication events were frequently observed within the germarium in the absence of DNA replication. Finally, we report the presence of an unusually long centriole that is first detected in the cystoblast and is always associated with the developing oocyte. This centriole is directly inherited after the asymmetric division of the germline stem cells and persists during the process of oocyte selection, thus already representing a marker for oocyte identification at the beginning of its formation and during the ensuing developmental stages.

2020 ◽  
Author(s):  
Patrick Blatt ◽  
Siu Wah Wong-Deyrup ◽  
Alicia McCarthy ◽  
Shane Breznak ◽  
Matthew D. Hurton ◽  
...  

AbstractIn sexually reproducing animals, the oocyte contributes a large supply of RNAs that are essential to launch development upon fertilization. The mechanisms that regulate the composition of the maternal RNA contribution during oogenesis are unclear. Here, we show that a subset of RNAs expressed during the early stages of oogenesis is subjected to regulated degradation during oocyte specification. Failure to remove these RNAs results in oocyte dysfunction and death. We identify the RNA-degrading Super Killer complex and No-Go Decay factor Pelota as key regulators of oogenesis via targeted clearance of RNAs expressed in germline stem cells. These regulators target RNAs enriched for cytidine sequences bound by the protein Half pint. Thus, RNA degradation helps orchestrate a germ cell-to-maternal transition by sculpting the maternal RNA contribution to the zygote.


2017 ◽  
Vol 4 (2) ◽  
pp. 173-184 ◽  
Author(s):  
Swati Sharma ◽  
Joana M. D. Portela ◽  
Daniel Langenstroth-Röwer ◽  
Joachim Wistuba ◽  
Nina Neuhaus ◽  
...  

Abstract. Over the past few decades, several studies have attempted to decipher the biology of mammalian germline stem cells (GSCs). These studies provide evidence that regulatory mechanisms for germ cell specification and migration are evolutionarily conserved across species. The characteristics and functions of primate GSCs are highly distinct from rodent species; therefore the findings from rodent models cannot be extrapolated to primates. Due to limited availability of human embryonic and testicular samples for research purposes, two non-human primate models (marmoset and macaque monkeys) are extensively employed to understand human germline development and differentiation. This review provides a broader introduction to the in vivo and in vitro germline stem cell terminology from primordial to differentiating germ cells. Primordial germ cells (PGCs) are the most immature germ cells colonizing the gonad prior to sex differentiation into testes or ovaries. PGC specification and migratory patterns among different primate species are compared in the review. It also reports the distinctions and similarities in expression patterns of pluripotency markers (OCT4A, NANOG, SALL4 and LIN28) during embryonic developmental stages, among marmosets, macaques and humans. This review presents a comparative summary with immunohistochemical and molecular evidence of germ cell marker expression patterns during postnatal developmental stages, among humans and non-human primates. Furthermore, it reports findings from the recent literature investigating the plasticity behavior of germ cells and stem cells in other organs of humans and monkeys. The use of non-human primate models would enable bridging the knowledge gap in primate GSC research and understanding the mechanisms involved in germline development. Reported similarities in regulatory mechanisms and germ cell expression profile in primates demonstrate the preclinical significance of monkey models for development of human fertility preservation strategies.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zezheng Pan ◽  
Mengli Sun ◽  
Xia Liang ◽  
Jia Li ◽  
Fangyue Zhou ◽  
...  

The conventional view is that female mammals lose their ability to generate new germ cells after birth. However, in recent years, researchers have successfully isolated and cultured a type of germ cell from postnatal ovaries in a variety of mammalian species that have the abilities of self-proliferation and differentiation into oocytes, and this finding indicates that putative germline stem cells maybe exist in the postnatal mammalian ovaries. Herein, we review the research history and discovery of putative female germline stem cells, the concept that putative germline stem cells exist in the postnatal mammalian ovary, and the research progress, challenge, and application of putative germline stem cells in recent years.


Author(s):  
Matthew Wooten ◽  
Zehra Nizami ◽  
Xinxing Yang ◽  
Jonathan Snedeker ◽  
Rajesh Ranjan ◽  
...  

Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2937-2947 ◽  
Author(s):  
D. McKearin ◽  
B. Ohlstein

Cell differentiation commonly dictates a change in the cell cycle of mitotic daughters. Previous investigations have suggested that the Drosophila bag of marbles (bam) gene is required for the differentiation of germline stem cell daughters (cystoblasts) from the mother stem cells, perhaps by altering the cell cycle. In this paper, we report the preparation of antibodies to the Bam protein and the use of those reagents to investigate how Bam is required for germ cell development. We find that Bam exists as both a fusome component and as cytoplasmic protein and that cytoplasmic and fusome Bam might have separable activities. We also show that bam mutant germ cells are blocked in differentiation and are trapped as mitotically active cells like stem cells. A model for how Bam might regulate cystocyte differentiation is presented.


Development ◽  
1999 ◽  
Vol 126 (9) ◽  
pp. 1833-1844 ◽  
Author(s):  
F.J. King ◽  
H. Lin

Drosophila oogenesis starts when a germline stem cell divides asymmetrically to generate a daughter germline stem cell and a cystoblast that will develop into a mature egg. We show that the fs(1)Yb gene is essential for the maintenance of germline stem cells during oogenesis. We delineate fs(1)Yb within a 6.4 kb genomic region by transgenic rescue experiments. fs(1)Yb encodes a 4.1 kb RNA that is present in the third instar larval, pupal and adult stages, consistent with its role in regulating germline stem cells during oogenesis. Germline clonal analysis shows that all fs(1)Yb mutations are soma-dependent. In the adult ovary, fs(1)Yb is specifically expressed in the terminal filament cells, suggesting that fs(1)Yb acts in these signaling cells to maintain germline stem cells. fs(1)Yb encodes a novel hydrophilic protein with no potential signal peptide or transmembrane domains, suggesting that this protein is not itself a signal but a key component of the signaling machinery for germline stem cell maintenance.


Reproduction ◽  
2010 ◽  
Vol 139 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Jin Gyoung Jung ◽  
Young Mok Lee ◽  
Jin Nam Kim ◽  
Tae Min Kim ◽  
Ji Hye Shin ◽  
...  

We recently developed bimodal germline chimera production approaches by transfer of primordial germ cells (PGCs) or embryonic germ cells (EGCs) into embryos and by transplantation of spermatogonial stem cells (SSCs) or germline stem cells (GSCs) into adult testes. This study was undertaken to investigate the reversible developmental unipotency of chicken germ cells using our established germline chimera production systems. First, we transferred freshly isolated SSCs from adult testis or in vitro cultured GSCs into stage X and stage 14–16 embryos, and we found that these transferred SSCs/GSCs could migrate to the recipient embryonic gonads. Of the 527 embryos that received SSCs or GSCs, 135 yielded hatchlings. Of 17 sexually mature males (35.3%), six were confirmed as germline chimeras through testcross analysis resulting in an average germline transmission efficiency of 1.3%. Second, PGCs/EGCs, germ cells isolated from embryonic gonads were transplanted into adult testes. The EGC transplantation induced germline transmission, whereas the PGC transplantation did not. The germline transmission efficiency was 12.5 fold higher (16.3 vs 1.3%) in EGC transplantation into testis (EGCs to adult testis) than that in SSC/GSC transfer into embryos (testicular germ cells to embryo stage). In conclusion, chicken germ cells from different developmental stages can (de)differentiate into gametes even after the germ cell developmental clock is set back or ahead. Use of germ cell reversible unipotency might improve the efficiency of germ cell-mediated germline transmission.


2020 ◽  
Vol 21 (11) ◽  
pp. 3846
Author(s):  
Yuan Gao ◽  
Fei Wu ◽  
Yaxuan Ren ◽  
Zihui Zhou ◽  
Ningbo Chen ◽  
...  

Spermatogenesis is a complex biological process regulated by well-coordinated gene regulation, including MicroRNAs (miRNAs). miRNAs are endogenous non-coding ribonucleic acids (ncRNAs) that mainly regulate the gene expression at post-transcriptional levels. Several studies have reported miRNAs expression in bull sperm and the process of spermatogenic arrest in cattle and yak. However, studies for the identification of differential miRNA expression and its mechanisms during the developmental stages of testis still remain uncertain. In the current study, we comprehensively analyzed the expression of miRNA in bovine testes at neonatal (3 days after birth, <i>n</i> = 3) and mature (13 months, n = 3) stages by RNA-seq. Moreover, the role of bta-miR-146b was also investigated in regulating the proliferation and apoptosis of bovine male germline stem cells (mGSCs) followed by a series of experiments. A total of 652 miRNAs (566 known and 86 novel miRNAs) were identified, whereas 223 miRNAs were differentially expressed between the two stages. Moreover, an elevated expression level of bta-miR-146b was found in bovine testis among nine tissues, and the functional studies indicated that the overexpression of bta-miR-146b inhibited the proliferation of bovine mGSCs and promoted apoptosis. Conversely, regulation of bta-miR-146b inhibitor promoted bovine mGSCs proliferation. This study provides a basis for understanding the regulation roles of miRNAs in bovine testis development and spermatogenesis.


Sign in / Sign up

Export Citation Format

Share Document