scholarly journals Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2045
Author(s):  
Zachary Finkel ◽  
Fatima Esteban ◽  
Brianna Rodriguez ◽  
Tianyue Fu ◽  
Xin Ai ◽  
...  

Adult neural stem and progenitor cells (NSPCs) contribute to learning, memory, maintenance of homeostasis, energy metabolism and many other essential processes. They are highly heterogeneous populations that require input from a regionally distinct microenvironment including a mix of neurons, oligodendrocytes, astrocytes, ependymal cells, NG2+ glia, vasculature, cerebrospinal fluid (CSF), and others. The diversity of NSPCs is present in all three major parts of the CNS, i.e., the brain, spinal cord, and retina. Intrinsic and extrinsic signals, e.g., neurotrophic and growth factors, master transcription factors, and mechanical properties of the extracellular matrix (ECM), collectively regulate activities and characteristics of NSPCs: quiescence/survival, proliferation, migration, differentiation, and integration. This review discusses the heterogeneous NSPC populations in the normal physiology and highlights their potentials and roles in injured/diseased states for regenerative medicine.

Author(s):  
Zachary Finkel ◽  
FATIMA ESTEBAN ◽  
Brianna Rodriguez ◽  
TIANYUE FU ◽  
Xin Ai ◽  
...  

Adult neural stem and progenitor cells (NSPCs) contribute to learning, memory, maintenance of homeostasis, energy metabolism and many other essential processes. They are highly heterogeneous populations that require input from a regionally distinct microenvironment including a mix of neurons, oligodendrocytes, astrocytes, ependymal cells, NG2+ glia, vasculature, cerebrospinal fluid (CSF), and others. The diversity of NSPCs is present in all three major parts of the CNS, i.e., the brain, spinal cord, and retina. Intrinsic and extrinsic signals, e.g., neurotrophic and growth factors, master transcription factors, and mechanical properties of the extracellular matrix (ECM), collectively regulate activities and characteristics of NSPCs: quiescence/survival, proliferation, migration, differentiation, and integration. This review discusses the heterogeneous NSPC populations in the normal physiology and highlights their potentials and roles in injured/diseased states for regenerative medicine.


Glia ◽  
2015 ◽  
Vol 63 (8) ◽  
pp. 1288-1290
Author(s):  
Vittorio Gallo ◽  
Magdalena Götz

Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6083-6090 ◽  
Author(s):  
Ann Dahlberg ◽  
Colleen Delaney ◽  
Irwin D. Bernstein

AbstractDespite progress in our understanding of the growth factors that support the progressive maturation of the various cell lineages of the hematopoietic system, less is known about factors that govern the self-renewal of hematopoietic stem and progenitor cells (HSPCs), and our ability to expand human HSPC numbers ex vivo remains limited. Interest in stem cell expansion has been heightened by the increasing importance of HSCs in the treatment of both malignant and nonmalignant diseases, as well as their use in gene therapy. To date, most attempts to ex vivo expand HSPCs have used hematopoietic growth factors but have not achieved clinically relevant effects. More recent approaches, including our studies in which activation of the Notch signaling pathway has enabled a clinically relevant ex vivo expansion of HSPCs, have led to renewed interest in this arena. Here we briefly review early attempts at ex vivo expansion by cytokine stimulation followed by an examination of our studies investigating the role of Notch signaling in HSPC self-renewal. We will also review other recently developed approaches for ex vivo expansion, primarily focused on the more extensively studied cord blood–derived stem cell. Finally, we discuss some of the challenges still facing this field.


2014 ◽  
Vol 14 (10) ◽  
pp. 2488-2499 ◽  
Author(s):  
Win-Ping Deng ◽  
Chi-Chiang Yang ◽  
Liang-Yo Yang ◽  
Chun-Wei D. Chen ◽  
Wei-Hong Chen ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 100-106
Author(s):  
Aleksandra I. Pavlyuchkova ◽  
Aleksey S. Kotov

In childhood, various infectious, autoimmune, genetic diseases can manifest. We present a case of fatal encephalomyelopolyradiculoneuritis of unknown etiology in a 9-year-old child. Patient N.K. in February 2019, noted an increase in temperature to subfebrile values, received symptomatic and antibiotic therapy without effect. An increase in protein and lymphocytes was found in the cerebrospinal fluid. According to MRI data, the emergence of more and more foci of the pathological signal in the brain and spinal cord, cranial nerves and nerve roots of the lumbar plexus was noted. Known infectious and autoimmune diseases were excluded. Despite active therapy with glucocorticoids, antibiotics, antiviral drugs, immunoglobulin, the disease continued to progress, and the patient died in April 2020.


Author(s):  
Peggy Mason

The central nervous system develops from a proliferating tube of cells and retains a tubular organization in the adult spinal cord and brain, including the forebrain. Failure of the neural tube to close at the front is lethal, whereas failure to close the tube at the back end produces spina bifida, a serious neural tube defect. Swellings in the neural tube develop into the hindbrain, midbrain, diencephalon, and telencephalon. The diencephalon sends an outpouching out of the cranium to form the retina, providing an accessible window onto the brain. The dorsal telencephalon forms the cerebral cortex, which in humans is enormously expanded by growth in every direction. Running through the embryonic neural tube is an internal lumen that becomes the cerebrospinal fluid–containing ventricular system. The effects of damage to the spinal cord and forebrain are compared with respect to impact on self and potential for improvement.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 978 ◽  
Author(s):  
Mariana I. Neves ◽  
Marco Araújo ◽  
Lorenzo Moroni ◽  
Ricardo M.P. da Silva ◽  
Cristina C. Barrias

Glycosaminoglycans (GAG) are long, linear polysaccharides that display a wide range of relevant biological roles. Particularly, in the extracellular matrix (ECM) GAG specifically interact with other biological molecules, such as growth factors, protecting them from proteolysis or inhibiting factors. Additionally, ECM GAG are partially responsible for the mechanical stability of tissues due to their capacity to retain high amounts of water, enabling hydration of the ECM and rendering it resistant to compressive forces. In this review, the use of GAG for developing hydrogel networks with improved biological activity and/or mechanical properties is discussed. Greater focus is given to strategies involving the production of hydrogels that are composed of GAG alone or in combination with other materials. Additionally, approaches used to introduce GAG-inspired features in biomaterials of different sources will also be presented.


2015 ◽  
Vol 43 (9) ◽  
pp. S73 ◽  
Author(s):  
Shuhei Koide ◽  
Keiyo Takubo ◽  
Motohiko Oshima ◽  
Satoru Miyagi ◽  
Atsunori Saraya ◽  
...  

1930 ◽  
Vol 51 (6) ◽  
pp. 889-902 ◽  
Author(s):  
Jules Freund

1. Antibodies can be extracted from the brain and spinal cord of rabbits actively or passively immunized with typhoid bacilli. 2. The titers of the antibodies in the extracts of brain and cord depend upon the titer of the blood serum. In actively immunized rabbits the following numerical relationships exist between the titers of the serum and of these organ extracts: The ratio of the titer of the serum is to the titers of extract of brain and of the spinal cord about as 100 is to 0.8; the titer of the serum is to the titer of the cerebrospinal fluid as 100 is to 0.3. In passively immunized rabbits the titer of the serum is to the titer of brain and spinal-cord extract as 100 is to 0.7. 3. The antibodies recovered from the brain are not due to the presence of blood in it for perfusion of the brain does not reduce its antibody content appreciably. 4. Antibodies penetrate into the spinal fluid from the blood even in the absence of inflammation of the meninges. When the penetration is completed the following numerical relationship exists between the titer of the serum and that of the cerebrospinal fluid: 100 to 0.25. 5. The penetration into the cerebrospinal fluid of antibodies injected intravenously proceeds at a slow rate, being completed only several hours after the immune serum has been injected. The penetration of antibodies into the tissue of the brain occurs at a very rapid rate. It is completed within 15 minutes. 6. It is very unlikely that when the immune serum is injected intravenously the antibodies reach the brain tissue by way of the cerebrospinal fluid, for (1) the antibody titer of the cerebrospinal fluid is lower than that of the brain extract, and (2) antibodies penetrate faster into the tissue of the brain than into the cerebrospinal fluid.


2008 ◽  
Vol 14 (5) ◽  
pp. 649-665 ◽  
Author(s):  
Hiroshi Nomura ◽  
Tasneem Zahir ◽  
Howard Kim ◽  
Yusuke Katayama ◽  
Iris Kulbatski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document