scholarly journals Regulation of T Cell Responses by Ionic Salt Signals

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2365
Author(s):  
Christina E. Zielinski

T helper cell responses are tailored to their respective antigens and adapted to their specific tissue microenvironment. While a great proportion of T cells acquire a resident identity, a significant proportion of T cells continue circulating, thus encountering changing microenvironmental signals during immune surveillance. One signal, which has previously been largely overlooked, is sodium chloride. It has been proposed to have potent effects on T cell responses in the context of autoimmune, allergic and infectious tissue inflammation in mouse models and humans. Sodium chloride is stringently regulated in the blood by the kidneys but displays differential deposition patterns in peripheral tissues. Sodium chloride accumulation might furthermore be regulated by dietary intake and thus by intentional behavior. Together, these results make sodium chloride an interesting but still controversial signal for immune modulation. Its downstream cellular activities represent a potential therapeutic target given its effects on T cell cytokine production. In this review article, we provide an overview and critical evaluation of the impact of this ionic signal on T helper cell polarization and T helper cell effector functions. In addition, the impact of sodium chloride from the tissue microenvironment is assessed for human health and disease and for its therapeutic potential.

2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Pritesh Desai ◽  
Vikas Tahiliani ◽  
Georges Abboud ◽  
Jessica Stanfield ◽  
Shahram Salek-Ardakani

ABSTRACTRespiratory infection with vaccinia virus (VacV) elicits robust CD8+T cell responses that play an important role in host resistance. In the lung, VacV encounters multiple tissue-resident antigen-presenting cell (APC) populations, but which cell plays a dominant role in priming of virus-specific CD8+effector T cell responses remains poorly defined. We used Batf3−/−mice to investigate the impact of CD103+and CD8α+dendritic cell (DC) deficiency on anti-VacV CD8+T cell responses. We found that Batf3−/−mice were more susceptible to VacV infection, exhibiting profound weight loss, which correlated with impaired accumulation of gamma interferon (IFN-γ)-producing CD8+T cells in the lungs. This was largely due to defective priming since early in the response, antigen-specific CD8+T cells in the draining lymph nodes of Batf3−/−mice expressed significantly reduced levels of Ki67, CD25, and T-bet. These results underscore a specific role for Batf3-dependent DCs in regulating priming and expansion of effector CD8+T cells necessary for host resistance against acute respiratory VacV infection.IMPORTANCEDuring respiratory infection with vaccinia virus (VacV), a member ofPoxviridaefamily, CD8+T cells play important role in resolving the primary infection. Effector CD8+T cells clear the virus by accumulating in the infected lungs in large numbers and secreting molecules such as IFN-γ that kill virally infected cells. However, precise cell types that regulate the generation of effector CD8+T cells in the lungs are not well defined. Dendritic cells (DCs) are a heterogeneous population of immune cells that are recognized as key initiators and regulators of T-cell-mediated immunity. In this study, we reveal that a specific subset of DCs that are dependent on the transcription factor Batf3 for their development regulate the magnitude of CD8+T cell effector responses in the lungs, thereby providing protection during pulmonary VacV infection.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 65-65 ◽  
Author(s):  
Robert J. Canter ◽  
Ethan Aguilar ◽  
Ziming Wang ◽  
Catherine Le ◽  
Lam Khuat ◽  
...  

65 Background: Obesity is increasingly prevalent and viewed as a critical co-factor in many pathologic conditions due to metabolic, inflammatory and immune perturbations. We performed a multi-species evaluation of the impact of obesity T cell effector functions and markers of immune exhaustion. Methods: We examined the impact of obesity on PD-1 and T cell-mediated responses across different pre-clinical models (tumor, infection, and autoimmune encephalomyelitis [EAE]) and species (mouse, dog, non-human primate, and human). Results: CD4 and CD8 T cells from obese mice, dogs, non-human primates and humans displayed increases in memory T cells and PD-1 expression, as well as impaired proliferative responses compared to lean controls, indicating a greater degree of T cell exhaustion at baseline. Following immunization with myelin oligodendrocyte glycoprotein, obese mice were resistant to induction of EAE, correlating with reduced antigen-specific CD4 T cells in the central nervous system. Administration of anti-PD-1 resulted in restoration of EAE and increased antigen-specific T cell numbers in obese mice. Tumors in obese mice exhibited accelerated growth compared to lean mice, and T cells displayed higher PD-1 expression correlating with RNAseq/molecular signatures of exhaustion compared to tumor-bearing lean mice. PD-1 blockade resulted in marked anti-tumor effects only in obese mice, and not lean. Impaired viral resistance to murine cytomegalovirus (MCMV) resulted was seen in obese mice, associated with increased PD-1/PD-L1 expression, which was reversible by PD-1/PD-L1 blockade. Conclusions: Obesity results in an increase in PD-1/PD-L1 expression and inhibition of T cell responses across species, and blockade not only reverses this inhibition but also leads to markedly augmented T cell effector responses compared to lean counterparts where no effects were observed. These results highlight how the immune system has evolved to control T cell responses using checkpoints contingent on dynamic host conditions and have translational relevance for predicting both efficacy and toxicity in clinical immuno-oncology.


1983 ◽  
Vol 157 (1) ◽  
pp. 312-323 ◽  
Author(s):  
A Bandeira ◽  
G Pobor ◽  
S Petterson ◽  
A Coutinho

Major histocompatibility complex-restricted helper T cell clones against "minor" antigens expressed on B cell and macrophage surfaces, when confronted with appropriate T cell-depleted spleen cells, are induced to proliferation and, in turn, activate "target-responder" B cells to polyclonal growth and maturation. Irradiation of helper cell populations, however, demonstrates that their effector functions (and B lymphocyte responses) are independent of proliferative activity. Adherent cell depletion on Sephadex G10 columns, while completely abrogating helper T cell proliferation, does not abolish helper cell-induced B cell responses, demonstrating a remarkable quantitative difference in macrophage requirements for the growth of these two cell types. Because significant B cell responses are detected upon interaction with primed helper T cells under conditions of extreme macrophage depletion, we conclude that the role of macrophages in T-B cell cooperation is limited to expansion of optimal numbers of helper T lymphocytes. It follows that activated helper cells can autonomously produce all B cell-specific growth and maturation factors mediating cooperative antibody responses. In contrast, the profound reduction of LPS-induced responses upon macrophage depletion suggests accessory cell production of such factors in thymus-independent B cell growth and/or maturation.


2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Junghwa Lee ◽  
Masao Hashimoto ◽  
Se Jin Im ◽  
Koichi Araki ◽  
Hyun-Tak Jin ◽  
...  

ABSTRACT Adenovirus serotype 5 (Ad5) is one of the most widely used viral vectors and is known to generate potent T cell responses. While many previous studies have characterized Ad5-induced CD8 T cell responses, there is a relative lack of detailed studies that have analyzed CD4 T cells elicited by Ad5 vaccination. Here, we immunized mice with Ad5 vectors encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) and examined GP-specific CD4 T cell responses elicited by Ad5 vectors and compared them to those induced by an acute LCMV infection. In contrast to LCMV infection, where balanced CD4 T helper 1 (Th1) and T follicular helper (Tfh) responses were induced, Ad5 immunization resulted in a significantly reduced frequency of Th1 cells. CD4 T cells elicited by Ad5 vectors expressed decreased levels of Th1 markers, such as Tim3, SLAM, T-bet, and Ly6C, had smaller amounts of cytotoxic molecules like granzyme B, and produced less interferon gamma than CD4 T cells induced by LCMV infection. This defective CD4 Th1 response appeared to be intrinsic for Ad5 vectors and not a reflection of comparing a nonreplicating vector to a live viral infection, since immunization with a DNA vector expressing LCMV-GP generated efficient CD4 Th1 responses. Analysis at early time points (day 3 or 4) after immunization with Ad5 vectors revealed a defect in the expression of CD25 (interleukin-2 [IL-2] receptor alpha chain) on Ad5-elicited CD4 T cells, and administration of exogenous IL-2 following Ad5 immunization partially restored CD4 Th1 responses. These results suggest that impairment of Th1 commitment after Ad5 immunization could be due to reduced IL-2-mediated signaling. IMPORTANCE During viral infection, generating balanced responses of Th1 and Tfh cells is important to induce effective cell-mediated responses and provide optimal help for antibody responses. In this study, to investigate vaccine-induced CD4 T cell responses, we characterized CD4 T cells after immunization with Ad5 vectors expressing LCMV-GP in mice. Ad5 vectors led to altered effector differentiation of LCMV GP-specific CD4 T cells compared to that during LCMV infection. CD4 T cells following Ad5 immunization exhibited impaired Th1 lineage commitment, generating significantly decreased Th1 responses than those induced by LCMV infection. Our results suggest that suboptimal IL-2 signaling possibly plays a role in reduced Th1 development following Ad5 immunization.


Blood ◽  
2002 ◽  
Vol 99 (11) ◽  
pp. 4053-4062 ◽  
Author(s):  
Andreas Heitger ◽  
Patricia Winklehner ◽  
Petra Obexer ◽  
Johannes Eder ◽  
Claudia Zelle-Rieser ◽  
...  

Impaired T-cell function after T-cell– depleting (TCD) therapy has been hypothesized to be related to a transient predominance of extrathymically expanding memory T cells. To test whether after TCD therapy the naive T-helper cell population is functionally intact, the in vitro immune response of CD4+CD45RA+ (naive) and of CD4+CD45RA− (memory) cells to polyclonal mitogens (immobilized anti-CD3, phytohemagglutinin) was analyzed by flow cytometry in 22 pediatric patients after high-dose chemotherapy (including 5 after autologous and 5 after allogeneic stem cell support). At 1 to 3 months after TCD therapy, patient samples showing decreased lymphoproliferative responses also showed a reduced induction of the early activation marker CD69 by CD4+ T cells from 4 to 72 hours after stimulation even when supplemented with exogenous interleukin-2. This defect affected CD4+CD45RA− cells, but, strikingly, also CD4+CD45RA+ cells, including samples in which CD4+CD45RA+ cells were more than 90/μL, thus indicating ongoing thymopoiesis. Histogram analyses showed the median peak channel of CD69 in control CD4+CD45RA+cells rising 98-fold (median) but only 28-fold in patient cells (P < .0001). Apoptosis as detected by annexin V staining was increased in resting patient CD4+ T cells (25% versus 6%) and also affected CD4+CD45RA+ cells (12% versus 5%, P < .01). When peripheral blood mononuclear cells (PBMCs) were enriched for T cells, stimulatory responses of CD4+ cells and of CD4+CD45RA+ cells markedly improved. Thus, after TCD therapy suppressor factors contained in the non–T-cell fraction of PBMCs may affect T-helper cells irrespective of their naive or memory phenotype thus extending T-cell dysfunction to the presumably thymus-dependently regenerated T cells.


2004 ◽  
Vol 78 (24) ◽  
pp. 13934-13942 ◽  
Author(s):  
N. N. Zheng ◽  
N. B. Kiviat ◽  
P. S. Sow ◽  
S. E. Hawes ◽  
A. Wilson ◽  
...  

ABSTRACT Human immunodeficiency virus type 2 (HIV-2) infection is typically less virulent than HIV-1 infection, which may permit the host to mount more effective, sustained T-cell immunity. We investigated antiviral gamma interferon-secreting T-cell responses by an ex vivo Elispot assay in 68 HIV-1- and 55 HIV-2-infected Senegalese patients to determine if differences relate to more efficient HIV-2 control. Homologous HIV-specific T cells were detected in similar frequencies (79% versus 76%, P = 0.7) and magnitude (3.12 versus 3.08 log10 spot-forming cells/106 peripheral blood mononuclear cells) in HIV-1 and HIV-2 infection, respectively. Gag-specific responses predominated in both groups (≥64%), and significantly higher Nef-specific responses occurred in HIV-1-infected (54%) than HIV-2-infected patients (22%) (P < 0.001). Heterologous responses were more frequent in HIV-1 than in HIV-2 infection (46% versus 27%, P = 0.04), but the mean magnitude was similar. Total frequencies of HIV-specific responses in both groups did not correlate with plasma viral load and CD4+ T-cell count in multivariate regression analyses. However, the magnitude of HIV-2 Gag-specific responses was significantly associated with lower plasma viremia in HIV-1-infected patients (P = 0.04). CD4+ T-helper responses, primarily recognizing HIV-2 Gag, were detected in 48% of HIV-2-infected compared to only 8% of HIV-1-infected patients. These findings indicate that improved control of HIV-2 infection may relate to the contribution of T-helper cell responses. By contrast, the superior control of HIV-1 replication associated with HIV-2 Gag responses suggests that these may represent cross-reactive, higher-avidity T cells targeting epitopes within Gag regions of functional importance in HIV replication.


Sign in / Sign up

Export Citation Format

Share Document