scholarly journals microRNAs in Human Adipose Tissue Physiology and Dysfunction

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3342
Author(s):  
Alina Kurylowicz

In recent years, there has been a large amount of evidence on the role of microRNA (miRNA) in regulating adipose tissue physiology. Indeed, miRNAs control critical steps in adipocyte differentiation, proliferation and browning, as well as lipolysis, lipogenesis and adipokine secretion. Overnutrition leads to a significant change in the adipocyte miRNOME, resulting in adipose tissue dysfunction. Moreover, via secreted mediators, dysfunctional adipocytes may impair the function of other organs and tissues. However, given their potential to control cell and whole-body energy expenditure, miRNAs also represent critical therapeutic targets for treating obesity and related metabolic complications. This review attempts to integrate present concepts on the role miRNAs play in adipose tissue physiology and obesity-related dysfunction and data from pre-clinical and clinical studies on the diagnostic or therapeutic potential of miRNA in obesity and its related complications.

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1122
Author(s):  
Jamie I. van der van der Vaart ◽  
Mariëtte R. Boon ◽  
Riekelt H. Houtkooper

Obesity is becoming a pandemic, and its prevalence is still increasing. Considering that obesity increases the risk of developing cardiometabolic diseases, research efforts are focusing on new ways to combat obesity. Brown adipose tissue (BAT) has emerged as a possible target to achieve this for its functional role in energy expenditure by means of increasing thermogenesis. An important metabolic sensor and regulator of whole-body energy balance is AMP-activated protein kinase (AMPK), and its role in energy metabolism is evident. This review highlights the mechanisms of BAT activation and investigates how AMPK can be used as a target for BAT activation. We review compounds and other factors that are able to activate AMPK and further discuss the therapeutic use of AMPK in BAT activation. Extensive research shows that AMPK can be activated by a number of different kinases, such as LKB1, CaMKK, but also small molecules, hormones, and metabolic stresses. AMPK is able to activate BAT by inducing adipogenesis, maintaining mitochondrial homeostasis and inducing browning in white adipose tissue. We conclude that, despite encouraging results, many uncertainties should be clarified before AMPK can be posed as a target for anti-obesity treatment via BAT activation.


2016 ◽  
Vol 231 (3) ◽  
pp. R77-R99 ◽  
Author(s):  
Liping Luo ◽  
Meilian Liu

Adipose tissue plays a central role in regulating whole-body energy and glucose homeostasis through its subtle functions at both organ and systemic levels. On one hand, adipose tissue stores energy in the form of lipid and controls the lipid mobilization and distribution in the body. On the other hand, adipose tissue acts as an endocrine organ and produces numerous bioactive factors such as adipokines that communicate with other organs and modulate a range of metabolic pathways. Moreover, brown and beige adipose tissue burn lipid by dissipating energy in the form of heat to maintain euthermia, and have been considered as a new way to counteract obesity. Therefore, adipose tissue dysfunction plays a prominent role in the development of obesity and its related disorders such as insulin resistance, cardiovascular disease, diabetes, depression and cancer. In this review, we will summarize the recent findings of adipose tissue in the control of metabolism, focusing on its endocrine and thermogenic function.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jamila Zammouri ◽  
Camille Vatier ◽  
Emilie Capel ◽  
Martine Auclair ◽  
Caroline Storey-London ◽  
...  

Lipodystrophy syndromes are rare diseases originating from a generalized or partial loss of adipose tissue. Adipose tissue dysfunction results from heterogeneous genetic or acquired causes, but leads to similar metabolic complications with insulin resistance, diabetes, hypertriglyceridemia, nonalcoholic fatty liver disease, dysfunctions of the gonadotropic axis and endocrine defects of adipose tissue with leptin and adiponectin deficiency. Diagnosis, based on clinical and metabolic investigations, and on genetic analyses, is of major importance to adapt medical care and genetic counseling. Molecular and cellular bases of these syndromes involve, among others, altered adipocyte differentiation, structure and/or regulation of the adipocyte lipid droplet, and/or premature cellular senescence. Lipodystrophy syndromes frequently present as systemic diseases with multi-tissue involvement. After an update on the main molecular bases and clinical forms of lipodystrophy, we will focus on topics that have recently emerged in the field. We will discuss the links between lipodystrophy and premature ageing and/or immuno-inflammatory aggressions of adipose tissue, as well as the relationships between lipomatosis and lipodystrophy. Finally, the indications of substitutive therapy with metreleptin, an analog of leptin, which is approved in Europe and USA, will be discussed.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 2006-P ◽  
Author(s):  
TING LI ◽  
WILLIAM LESUER ◽  
ABHILASHA SINGH ◽  
JAMES D. HERNANDEZ ◽  
XIAODONG ZHANG ◽  
...  

2009 ◽  
Vol 20 (3) ◽  
pp. 801-808 ◽  
Author(s):  
Fei Wang ◽  
Qiang Tong

Sirtuin family of proteins possesses NAD-dependent deacetylase and ADP ribosyltransferase activities. They are found to respond to nutrient deprivation and profoundly regulate metabolic functions. We have previously reported that caloric restriction increases the expression of one of the seven mammalian sirtuins, SIRT2, in tissues such as white adipose tissue. Because adipose tissue is a key metabolic organ playing a critical role in whole body energy homeostasis, we went on to explore the function of SIRT2 in adipose tissue. We found short-term food deprivation for 24 h, already induces SIRT2 expression in white and brown adipose tissues. Additionally, cold exposure elevates SIRT2 expression in brown adipose tissue but not in white adipose tissue. Intraperitoneal injection of a β-adrenergic agonist (isoproterenol) enhances SIRT2 expression in white adipose tissue. Retroviral expression of SIRT2 in 3T3-L1 adipocytes promotes lipolysis. SIRT2 inhibits 3T3-L1 adipocyte differentiation in low-glucose (1 g/l) or low-insulin (100 nM) condition. Mechanistically, SIRT2 suppresses adipogenesis by deacetylating FOXO1 to promote FOXO1's binding to PPARγ and subsequent repression on PPARγ transcriptional activity. Overall, our results indicate that SIRT2 responds to nutrient deprivation and energy expenditure to maintain energy homeostasis by promoting lipolysis and inhibiting adipocyte differentiation.


2020 ◽  
pp. 1-2

Adipose tissue plays a central role in regulating whole-body energy. Moreover, adipose tissue acts as an endocrine organ and produces numerous bioactive factors called adipokines which communicate with other organs and modulate a range of metabolic pathways: proteins (adiponectin, angiopoietins, chemerin, etc.), lipids (fatty acid esters of hydroxyl fatty acids, lysophosphatidic acids and sphingolipids), metabolites (uric acid and uridine) and microRNAs. However, excessive adipose tissue is associated with a chronic state of low-grade inflammation, caused by unbalanced production or secretion of these adipokines and can contribute to the development of obesity [1].


2017 ◽  
Vol 75 (6) ◽  
pp. 975-987 ◽  
Author(s):  
I. C. Lopez-Mejia ◽  
J. Castillo-Armengol ◽  
S. Lagarrigue ◽  
L. Fajas

2020 ◽  
Vol 27 ◽  
Author(s):  
Ji-Yeon Lee ◽  
Myoung Hee Kim

: HOX genes belong to the highly conserved homeobox superfamily, responsible for the regulation of various cellular processes that control cell homeostasis, from embryogenesis to carcinogenesis. The abnormal expression of HOX genes is observed in various cancers, including breast cancer; they act as oncogenes or as suppressors of cancer, according to context. In this review, we analyze HOX gene expression patterns in breast cancer and examine their relationship, based on the three-dimensional genome structure of the HOX locus. The presence of non-coding RNAs, embedded within the HOX cluster, and the role of these molecules in breast cancer have been reviewed. We further evaluate the characteristic activity of HOX protein in breast cancer and its therapeutic potential.


2020 ◽  
Vol 21 (21) ◽  
pp. 8289
Author(s):  
Mari T. Kaartinen ◽  
Mansi Arora ◽  
Sini Heinonen ◽  
Aila Rissanen ◽  
Jaakko Kaprio ◽  
...  

Transglutaminases TG2 and FXIII-A have recently been linked to adipose tissue biology and obesity, however, human studies for TG family members in adipocytes have not been conducted. In this study, we investigated the association of TGM family members to acquired weight gain in a rare set of monozygotic (MZ) twins discordant for body weight, i.e., heavy–lean twin pairs. We report that F13A1 is the only TGM family member showing significantly altered, higher expression in adipose tissue of the heavier twin. Our previous work linked adipocyte F13A1 to increased weight, body fat mass, adipocyte size, and pro-inflammatory pathways. Here, we explored further the link of F13A1 to adipocyte size in the MZ twins via a previously conducted TWA study that was further mined for genes that specifically associate to hypertrophic adipocytes. We report that differential expression of F13A1 (ΔHeavy–Lean) associated with 47 genes which were linked via gene enrichment analysis to immune response, leucocyte and neutrophil activation, as well as cytokine response and signaling. Our work brings further support to the role of F13A1 in the human adipose tissue pathology, suggesting a role in the cascade that links hypertrophic adipocytes with inflammation.


2021 ◽  
Vol 22 (15) ◽  
pp. 7920
Author(s):  
Myroslava Mytsyk ◽  
Giulia Cerino ◽  
Gregory Reid ◽  
Laia Gili Sole ◽  
Friedrich S. Eckstein ◽  
...  

The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.


Sign in / Sign up

Export Citation Format

Share Document