scholarly journals The Role of Chaperone-Mediated Autophagy in Bortezomib Resistant Multiple Myeloma

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3464
Author(s):  
Nicholas Nikesitch ◽  
Patricia Rebeiro ◽  
Lye Lin Ho ◽  
Srinivasa Pothula ◽  
Xin Maggie Wang ◽  
...  

Background: Multiple myeloma (MM) remains incurable despite high-dose chemotherapy, autologous stem cell transplants and novel agents. Even with the improved survival of MM patients treated with novel agents, including bortezomib (Bz), the therapeutic options in relapsed/refractory MM remain limited. The majority of MM patients eventually develop resistance to Bz, although the mechanisms of the resistance are poorly understood. Methods: Lysosomal associated membrane protein 2A (LAMP2A) mRNA and protein expression levels were assessed in ex vivo patient samples and a Bz-resistant MM cell line model by in real-rime PCR, western blotting and immunohistochemistry. In vitro modelling of chaperone-mediated autophagy (CMA) activity in response to ER stress were assessed by western blotting and confocal microscopy. The effects of CMA inhibition on MM cell viability and Bz sensitivity in MM cells were assessed by Annexin V/7AAD apoptosis assays using flow cytometry. Results: In this study, there is evidence that CMA, a chaperone-mediated protein degradation pathway, is upregulated in Bz-resistant MM and the inhibition of CMA sensitises resistant cells to Bz. The protein levels of LAMP2A, the rate-limiting factor of the CMA pathway, are significantly increased in MM patients resistant to Bz and within our Bz-resistant cell line model. Bz-resistant cell lines also possessed higher basal CMA activity than the Bz-sensitive parent cell line. In MM cell lines, CMA activity was upregulated in response to ER stress induced by Bz. The inhibition of CMA sensitises Bz-resistant cells to Bz and the combination of CMA inhibition and Bz in vitro had a more cytotoxic effect on myeloma cells than Bz alone. Conclusion: In summary, the upregulation of CMA is a potential mechanism of resistance to Bz and a novel target to overcome Bz-resistant MM.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4806-4806
Author(s):  
Jeannine Silberman ◽  
Kimberly Dalbey ◽  
Claire Torre ◽  
Ebenezer David ◽  
Leif Bergsagel ◽  
...  

Abstract Backround: Dysregulation of the PI3K/Akt signal transduction pathway has been implicated in the development of a number of malignancies, including multiple myeloma (MM). This cellular signaling mechanism and its downstream targets (eg mTOR) regulate cell growth, proliferation and apoptosis. SF1126 (Semafore) is a water soluble prodrug of the pan-PI3K inhibitor, LY294002, whose anti-proliferative and pro-apoptotic activity has been well described in the literature. Preclinical studies using SF1126 in a variety of malignancies including glioma, prostate, non-small cell lung cancer, and breast cancer appear promising and have demonstrated profound antiangiogenic effects mediated through VEGF inhibition. Aim: To demonstrate in vitro anti-myeloma activity of SF1126, alone and in combination with dexamethasone, bortezomib, and melphalan and evaluate their effects on downstream targets of PI3K/Akt. Methods: MM cell lines (MM.1R, MM.1S, RPMI 8226) were treated with SF1126 (1–100uM), dexamethasone (5uM), bortezomib (5nM), melphalan (10uM) alone, and in combination. Growth inhibition following treatment was measured by MTT assay at 24 and 48 hours. Apoptosis was assessed by annexin-V binding assay using flow cytometry. Immunoblot analysis was performed to measure downstream targets of Akt including: p-PDK1 and mTOR (4E-BP1). Results: A clear dose response was established with an IC50 of 8.75uM in the MM.1R and 7.5uM in the MM.1S cell lines at 48 hours. At 24 and 48 hours, 5uM SF1126 alone resulted in 80% and 64% cell viability by MTT assay, respectively, in the MM.1R cell line. The combination of 5uM SF1126 with conventional agents was then tested in the MM.1R cell line. Combination with 5uM dexamethasone enhanced the efficacy of 5uM SF1126 by 26% at 48 hours. Combination with 10uM melphalan enhanced the efficacy of 5uM SF1126 by 20% at 24 hours. The combination with 5nM bortezomib enhanced the efficacy of 5uM SF1126 by 23% at 48 hours. Given prior experience demonstrating that short exposure to bortezomib activates Akt, we tested sequential administration of bortezomib and SF1126 in the MM.1R cell line. Optimal cell death was induced with bortezomib prior to SF1126, followed by concurrent administration. Immunoblot analysis of p-PDK1, downstream mTOR target (4E-BP1) were performed on the MM.1S cell line treated with 5, 10, 20, and 50uM SF1126 at 12 and 24 hours. At the 12 hour time point, p-PDK-1 appeared to increase, but was significantly reduced by 48 hours. A similar pattern of initial upregulation followed by reduction by 24 hours was seen with the mTOR protein 4E-BP1. Conclusion: SF1126 has dose dependent, in vitro activity in several multiple myeloma cell lines both as a single agent and in combination with dexamethasone, bortezomib, and melphalan. The addition of SF1126 to dexamethasone in a dexamethasone resistant cell line results in increased cell death, possibly by overcoming resistance mechanisms. The addition of SF1126 to bortezomib and melphalan also resulted in increased growth inhibition over either agent alone. These results warrant further study of this promising new pan-PI3K/Akt inhibitor.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5172-5172
Author(s):  
Ahmet H Elmaagacli ◽  
Michael Koldehoff ◽  
Nina K Steckel ◽  
Dietrich Beelen

Abstract Background. The protein kinase C (PKC) inhibitor PKC412 (N-benzylstaurosporine) is a derivate of the naturally occurring alkaloid staurosproine and has been shown to inhibit the conventional isoforms of PKC (alfa, beta1, beta2 and gamma). PKC412 has been shown to have an antitumor effect on non-small cell lung cancer and acute leukemia with FLT3 mutations, but little is known about its effect on multiple myeloma up to date. Methods. Since PKC is also an inhibitor of a tyrosin kinase which is associated with VEGF, and inhibits the release of Interleukin-6, TNF alfa, and that of growth factor dependent C-FOS, we postulated that PKC412 might have also strong anti-myeloma features. Here we evaluated the anti-myeloma effect of PKC412 in the multiple myeloma cell lines INA-6, OPM-2 and RPMI 8226 by measuring its effect on their proliferation rate, the apoptosis rate and the Interleukin-6 mRNA expression. Results. PKC412 showed strong anti-myeloma effects in all three celllines. 50nM of PKC412 was enough to drop the proliferation rate in all three cell lines under 10% compared to untreated cells(p<0.01). The apoptosis rate increased in INA cell line up to 2,5 times and in RPMI cell line up to 3 times (p<0.05), whereas only a moderate increase was observed in the OPM2 cell line with 500nM of PKC412. As expected, the IL-6 mRNA expression decreased after PKC412 treatment in all three cell lines more than 50%. The addition of Bevacizumab to PKC412 in RPMI and OPM-2 cell lines did not increased the apoptosis rate significantly, whereas the addition of short-interference RNA (RNAi) against VEGF increased the apoptosis rate in RPMI 8226 cells about 20% (p<0.05) and in OPM-2 cells up to 30% (p<0.01) compared to PKC412 alone, which was also associated concordantly with a further reduction of the proliferation rate in RPMI and OPM-2 cells up to 30%. Conclusions. PKC412 shows strong anti-myeloma effects and might be effective also in the treatment of patients with multiple myeloma. These in-vitro studies might encourage to initiate clinical trials with PKC412 in patients with multiple myeloma.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3014-3014
Author(s):  
Giada Bianchi ◽  
Vijay G. Ramakrishnan ◽  
Teresa Kimlinger ◽  
Jessica Haug ◽  
S. Vincent Rajkumar ◽  
...  

Abstract Abstract 3014 Background: Proteasome inhibitors have proven particularly effective in treatment of multiple myeloma, the second most frequent hematologic malignancy in the western world. Bortezomib, the first in class proteasome inhibitor in clinical use, was first approved in 2003 via fast FDA track, given the remarkable activity shown during phase II clinical trials. Nevertheless, more than 50% of multiple myeloma patients did not respond to single agent bortezomib when administered as second line agent. Moreover, bortezomib is only available for intravenous administration, representing a cumbersome therapy for patients, and its use is limited by significant toxicities (especially peripheral neuropathy). MLN9708 (Millennium Pharmaceuticals, Inc.), an investigational orally available, small molecule, is a potent, specific and reversible inhibitor of the 20S proteasome. It is currently under clinical investigation for the treatment of hematologic and non-hematologic malignancies. Upon exposure to aqueous solutions or plasma, MLN9708 rapidly hydrolyzes to MLN2238, the biologically active form, and MLN2238 was used for all of the preclinical studies reported here. In vitro biochemistry studies have shown that MLN2238 has a faster dissociation rate from the proteasome compared to bortezomib, and in vivo studies of MLN2238 have shown antitumor activity in a broader range of tumor xenografts when compared to bortezomib. Given these encouraging preclinical results, we set to investigate the anti-myeloma activity of MLN2238 in vitro. Results: MLN2238 proved to have anti-proliferative and pro-apoptotic activity against a broad range of MM cell lines with EC50 at 24 hours ranging between 10 and 50 nM, even in relatively resistant MM cell lines (OPM2, DOX6, RPMI, etc.). In MM.1S cells, induction of apoptosis was time and dose dependent and related to activation of both caspase 8 and 9. When compared to MM.1S treated for 24 hours with EC50 dose of bortezomib, treatment with EC50 dose of MLN2238 resulted in the same extent of caspases cleavage occurring at an earlier time point (8-12 hours), possibly suggesting more rapid onset and/or irreversibility of apoptosis in cells treated with MLN2238. Treatment with MLN2238 was associated with early, but persistent induction of endoplasmic reticulum (ER) stress with BiP being induced 2–4 hours after treatment with EC50 dose and gradually increasing over time. While bortezomib has been associated with early induction and late decrease in proteins involved in ER stress, MLN2238 appears to induce a persistent rise in these factors, suggesting either more sustained proteasome blockade with stabilization of proteasome substrates or de-novo induction of unfolded protein response (UPR) genes. MLN2238 also proved effective in reducing phosphorylation of ERK1-2 with no overall alteration in the total ERK level, thus accounting for the observed reduction in proliferation upon treatment. Preliminary data indicate potential for additive and synergistic combination with widely used drugs, including doxorubicin and dexamethasone. Conclusion: While further clinical data are needed to establish the effectiveness of MLN2238 in the treatment of multiple myeloma, these preliminary nonclinical data, together with the favorable biochemical and pharmacokinetic properties, including oral bioavailability, make the investigational agent MLN9708 an appealing candidate for treatment of multiple myeloma. Further in vitro data could help establish whether a difference in the apoptotic mechanisms exist between MLN2238 and other proteasome inhibitors, primarily bortezomib, and could also help inform combination treatment approaches aimed at increasing effectiveness, overcoming bortezomib resistance and decreasing toxicity. Disclosures: Kumar: Celgene: Consultancy, Research Funding; Millennium: Research Funding; Merck: Consultancy, Research Funding; Novartis: Research Funding; Genzyme: Consultancy, Research Funding; Cephalon: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2481-2481 ◽  
Author(s):  
Qian Yu ◽  
Anna M Eiring ◽  
Matthew S. Zabriskie ◽  
Jamshid Khorashad ◽  
David J Anderson ◽  
...  

Abstract Abstract 2481 Ponatinib (AP24534) is a pan-BCR-ABL inhibitor developed for treatment-refractory chronic myeloid leukemia (CML) and has significant activity in patients who fail second-line dasatinib and/or nilotinib tyrosine kinase inhibitor (TKI) therapy. A pivotal phase II trial (clinicaltrials.gov NCT01207440) is underway. BCR-ABL kinase domain mutation-mediated ponatinib resistance has been investigated in vitro (Cancer Cell 16, 2009, 401). Here, we developed ponatinib-resistant, BCR-ABL+ cell lines lacking a kinase domain mutation and investigated mechanisms of resistance to ponatinib and other TKIs. Methods: Four BCR-ABL+ CML cell lines (K562, AR230, BV173, and 32D(BCR-ABL)) were maintained in liquid culture containing ponatinib (0.1 nM) for 10 days. The ponatinib concentration was increased in small increments for a minimum of 90 days, yielding corresponding ponatinib-resistant cell lines. BCR-ABL kinase domain sequencing of sensitive and resistant cells confirmed BCR-ABL to be unmutated. Real-time qPCR was used to compare the expression of BCR-ABL in ponatinib-sensitive and -resistant cell lines. Immunoblot analysis (total and tyrosine-phosphorylated BCR-ABL) was used to the compare levels of BCR-ABL protein and to determine whether resistance to ponatinib corresponded with reduced (partially BCR-ABL-independent) or complete inhibition of BCR-ABL tyrosine phosphorylation (fully BCR-ABL-independent). Cell proliferation assays were performed on resistant and sensitive cell lines in the presence of ponatinib, nilotinib, and dasatinib. A small-molecule inhibitor screen composed of >90 cell-permeable inhibitors that collectively target the majority of the tyrosine kinome as well as other kinases (Blood 116, 2010, abstract 2754) is currently being applied to the 32D(BCR-ABL)R cell line in the presence of 24 nM ponatinib to assess synthetic lethality, with results analyzed using a companion drug sensitivity algorithm. As a second strategy to generate resistant lines, N-ethyl-N-nitrosourea (ENU) mutagenesis was done to investigate BCR-ABL kinase domain-mediated resistance in myeloid K562, AR230, BV173, and 32D(BCR-ABL) cells. After ENU exposure, cells were washed and cultured in 96-well plates with escalating ponatinib. Results: The four BCR-ABL+ cell lines initially grew in the presence of 0.1 nM but not 0.5 nM ponatinib. Upon gradual exposure to escalating ponatinib, each of the cell lines exhibited a degree of adaptation to growth in the presence of the inhibitor (range: 10 to 240-fold). Real-time qPCR showed a modest two-fold increase in BCR-ABL expression level in K562R, AR230R and BV173R cell lines relative to the respective parental lines. Based on immunoblot analysis, cell lines segregated into two categories of ponatinib resistance: partially (K562R and AR230R) or fully BCR-ABL-independent (BV173R and 32D(BCR-ABL)R). Cell proliferation assays showed that ponatinib resistant cell lines also exhibited resistance to nilotinib and dasatinib. The 32D(BCR-ABL)R cell line exhibited a level of ponatinib resistance comparable to that of the Ba/F3 BCR-ABLE255V cell line, which carries the most ponatinib-resistant BCR-ABL mutation. BCR-ABL tyrosine phosphorylation was efficiently blocked by low concentrations of ponatinib (<5 nM) in the 32D(BCR-ABL)R cell line, yet these cells remained viable in the presence of up to 24 nM ponatinib. The effects of providing a second kinase inhibitor along with ponatinib (24 nM) in order to probe for synthetic lethality are under study. Possible involvement of a second, moderately ponatinib-sensitive target is suggested by the sharp ponatinib maximum at 24 nM; even 26 nM ponatinib is toxic to 32D(BCR-ABL)R cells. Thus far, ENU mutagenesis screens in human CML cell lines failed to yield resistant clones and only a few were recovered from the murine 32D(BCR-ABL)R cell line (3/1440 wells; the only BCR-ABL mutant recovered was BCR-ABLL387F). Conclusions: The ponatinib resistant, BCR-ABL+ cell lines described here exhibit either a partially or fully BCR-ABL independent mechanism of resistance. The molecular details of both processes will be reported, with an emphasis on the striking level of resistance (240-fold over starting conditions) exhibited by the 32D(BCR-ABL)R cell line. Our in vitro results indicate that BCR-ABL independent mechanisms may contribute to ponatinib resistance in myeloid CML cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1142-1142
Author(s):  
Jennifer Totman ◽  
Dorothy Brach ◽  
Vinny Motwani ◽  
Selene Howe ◽  
Emily Deutschman ◽  
...  

Abstract Introduction: SETD2 is the only known histone methyltransferase (HMT) capable of catalyzing H3K36 trimethylation (H3K36me3) in vivo. It plays an important role in several biological processes including B cell development and maturation, leading to the hypothesis that SETD2 inhibition in these settings could provide anti-tumor effects. The normal process of B cell development/maturation renders B cells susceptible to genetic vulnerabilities that can result in a dysregulated epigenome and tumorigenesis, including in multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL). For example, 15%-20% of MM harbors the high risk (4;14) chromosomal translocation, resulting in high expression of the multiple myeloma SET domain (MMSET) gene. MMSET is an HMT that catalyzes H3K36me1 and H3K36me2 formation and extensive scientific work has established overexpressed MMSET as a key factor in t(4;14) myeloma pathogenesis. To the best of our knowledge MMSET has eluded drug discovery efforts, however, since t(4;14) results in high levels of the H3K36me2 substrate for SETD2, inhibiting SETD2 offers promise for targeting the underlying oncogenic mechanism driven by MMSET overexpression in t(4;14) MM patients. In addition, SETD2 loss of function mutations described to date in leukemia and DLBCL are always heterozygous, suggesting a haploinsufficient tumor suppressor role for SETD2. This observation points to a key role for SETD2 in leukemia and lymphoma biology and suggests that therapeutic potential of SETD2 inhibition may also exist in these or similar settings. EZM0414 is a first-in-class, potent, selective, orally bioavailable small molecule inhibitor of the enzymatic activity of SETD2. We explored the anti-tumor effects of SETD2 inhibition with EZM0414 in MM and DLBCL preclinical studies to validate its potential as a therapy in these tumor types. Methods: Cellular proliferation assays determined IC 50 values of EZM0414 in MM and DLBCL cell line panels. Cell line-derived xenograft preclinical models of MM and DLBCL were evaluated for tumor growth inhibition (TGI) in response to EZM0414. H3K36me3 levels were determined by western blot analysis to evaluate target engagement. Combinatorial potential of SETD2 inhibition with MM and DLBCL standard of care (SOC) agents was evaluated in 7-day cotreatment in vitro cellular assays. Results: Inhibition of SETD2 by EZM0414 results in potent anti-proliferative effects in a panel of MM and DLBCL cell lines. EZM0414 inhibited proliferation in both t(4;14) and non-t(4;14) MM cell lines, with higher anti-proliferative activity generally observed in the t(4;14) subset of MM cell lines. The median IC 50value for EZM0414 in t(4;14) cell lines was 0.24 μM as compared to 1.2 μM for non-t(4;14) MM cell lines. Additionally, inhibitory growth effects on DLBCL cell lines demonstrated a wide range of sensitivity with IC 50 values from 0.023 μM to &gt;10 μM. EZM0414 resulted in statistically significant potent antitumor activity compared to the vehicle control in three MM and four DLBCL cell line-derived xenograft models. In the t(4;14) MM cell line-derived xenograft model, KMS-11, robust tumor growth regressions were observed at the top two doses with maximal TGI of 95%. In addition, two non-t(4;14) MM (RPMI-8226, MM.1S) and two DLBCL xenograft models (TMD8, KARPAS422) demonstrated &gt; 75% TGI; with two additional DLBCL models (WSU-DLCL2, SU-DHL-10) exhibiting &gt; 50% TGI in response to EZM0414. In all models tested, the antitumor effects observed correlated with reductions in intratumoral H3K36me3 levels demonstrating on-target inhibition of SETD2 methyltransferase activity in vivo. In vitro synergistic antiproliferative activity was also observed when EZM0414 was combined with certain SOC agents for MM and DLBCL. Conclusions: Targeting SETD2 with a small molecule inhibitor results in significantly reduced growth of t(4;14) MM, as well as non-t(4;14) MM and DLBCL cell lines, in both in vitro and in vivo preclinical studies. In addition, in vitro synergy was observed with EZM0414 and certain SOC agents commonly used in MM and DLBCL, supporting the combination of SETD2 inhibition with current MM and DLBCL therapies. This work provides the rationale for targeting SETD2 in B cell malignancies such as MM, especially t(4;14) MM, as well as DLBCL, and forms the basis for conducting Phase 1/1b clinical studies to evaluate the safety and activity of EZM0414 in patients with R/R MM and DLBCL. Disclosures Totman: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Brach: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Motwani: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Howe: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Deutschman: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Lampe: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Riera: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Tang: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Eckley: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Alford: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Duncan: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Farrow: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Dransfield: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Raimondi: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Thomeius: Foghorn Therapeutics: Current Employment, Current equity holder in publicly-traded company. Cosmopoulos: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Kutok: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1532-1532
Author(s):  
Fei Bao ◽  
Mary L. Nordberg ◽  
Paula Polk ◽  
Amanda Sun ◽  
David Murray ◽  
...  

Abstract Cyclophosphamide (CP) is one of the alkylating agents collectively referred to as oxazaphosphorines that are used to treat many types of cancers including myeloid leukemia. Tumor cell drug resistance is an important factor for clinical treatment failure. The mechanisms of drug resistance are multifactorial and incompletely understood. KBM-7 human CML cell line was established from blast cells from a patient in the terminal phase of CML. In the CP resistance model, the B5-180 sub-line was isolated following exposure to the in vitro active CP analog 4HC. B5-180 cells were cross-resistant to busulfan and γ-radiation. Total RNA was extracted and hybridized to Affymetrix Genechip HG-U95Av2 arrays. Each array contains 12,386 probes corresponding to approximately 9000 known human genes. Each cell line was arrayed in triplicate. Quantitative RT-PCR, Fluorescence In-Situ Hybridization (FISH) and cytogenetic analysis were performed in both cell lines. Both the KBM-7/B5 parental line and B5-180 resistant sub-line expressed high-levels of BCR-ABL transcripts by real-time RT-PCR. FISH and cytogenetic analysis revealed multiple copies of t(9;22) translocation and other additional chromosomal abnormalities such as trisomy 8, and abnormalities of chromosome 18 in both cell lines. Gene array identified 794 gene transcripts that were more than twofold (range from 2-fold to 2675-fold) over-expressed or under-expressed in the resistant line relative to the parental line. ALDH1A1 (aldehyde dehydrogenase 1 family) showed the most differential expression between sensitive and resistant cell lines, ALDH1A1 was upregulated more than 2000-fold in the resistant sub-line. ALDH-2 (aldehyde dehydrogenase 2 family mitochondrial) was also expressed substantially higher in the resistant line. This finding is consistent with the established fact that elevated ALDH activity is an important factor in the resistance of B5-180 cells to 4HC. The remaining differentially expressed genes encode proteins with a wide variety of biochemical functions, which include 44 apoptosis and 7 anti-apoptosis-related genes, 56 genes related to cell cycle and cell growth, 6 DNA repair genes, 13 genes involved in hemopoiesis and B-cell activation. We also tested the expression of the hematopietic transcription factor PU-1 and PUB, a novel PU-1 binding factor. Interestingly, the expression of PU-1 was decreased and PUB increased in the resistant clone. In conclusion, we have identified a large number of differentially expressed genes in a CP resistant cell line derived from CML blast crisis by microarray technology. Our results suggest that CP resistance is a complex phenotype that involves multiple genes and a variety of mechanisms. Real-time RT-PCR analysis and further characterization of selected genes associated with CP resistance as well as the response in vitro to tyrosine kinase inhibitors are currently under investigation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5159-5159
Author(s):  
Wai Chung Cheung ◽  
Yok Lam Kwong

Abstract Introduction. Treatment of multiple myeloma (MM), a B-cell neoplasm characterized by clonal expansion of plasma cells in the bone marrow, remains unsuccessful in a significant proportion of patients, so that innovative strategies are needed. Arsenic trioxide (As2O3) has shown notable efficacy against MM in vitro and in clinical studies. Multiple cellular pathways in MM are targeted by As2O3. As cellular growth of MM cells is interleukin-6 (IL-6) dependent, we investigated if As2O3 also targeted the IL-6 cascade. Materials and methods. The IL-6-dependent MM cell line U266 was used as an in vitro model. Cell growth was measured by MTT assay, and apoptosis by flow cytometry. Protein phosphorylation was studied by Western blotting with specific antibodies. Expression of IL-6 receptor (IL-6R) was investigated by Western blotting and flow cytometry. Gene expression was detected by quantitative polymerase chain reaction (Q-PCR). Results. As2O3 showed a time and dose related inhibition of U266 cellular proliferation by induction of apoptosis. At clinically achievable concentrations (2 – 4 μmol/L), As2O3-induced apoptosis was associated with inhibition of constitutive tyrosine phosphorylation of JAK2 and STAT3, in a time and dose-dependent manner. Furthermore, pre-treatment of U266 cells with As2O3 prevented rescue of phosphorylation of JAK2 and STAT3 by exogenous IL-6, implying that the IL-6 cascade was targeted. Using Western blot analysis, we showed that As2O3 induced a time and dose-dependent down-regulation of both components of the IL-6R complex: IL-6R alpha subunit (IL-6Rα) and gp130 signal transducer. These results were confirmed by flow cytometry, showing that As2O3 treatment led to a down-regulation of surface expression of the IL-6Rα. Interestingly, Q-PCR did not reveal any change in the mRNA levels of the two genes with As2O3 treatment, suggesting that As2O3 downregulated IL-6R complex via a post-transcriptional mechanism. It is known that under physiological conditions, the IL-6R complex is internalized upon ligand binding and is targeted to lysosomes for degradation. Treatment of the U266 cell line with the lysosome inhibitor ammonium chloride totally abrogated As2O3-induced degradation of IL-6Rα and gp130. These results suggested that As2O3 might promote lysosomal degradation of IL-6Rα and gp130 by inducing a ligand-independent internalization of the receptor complex. Conclusion. Our results demonstrated that As2O3 suppressed IL-6-induced JAK/STAT3 signaling pathway in MM cells and this might be, at least partly, mediated by promoting ligand-independent internalization and lysosomal degradation of the IL-6R complex. These results have significant implications on the use of As2O3 in the treatment of patients with MM and other malignancies that are IL-6 dependent.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2591-2591
Author(s):  
Valerie Camara-Clayette ◽  
Yves Lepelletier ◽  
Ivan Moura ◽  
William Vainchenker ◽  
Olivier Hermine ◽  
...  

Abstract Bortezomib, a proteasome inhibitor, has promising activity in MCL. Bortezomib mechanism of action is complex since multiple proteins and cellular pathways are regulated by proteasome degradation. By blocking the degradation of IKBa, the canonical NF-kB pathway is one of the major Bortezomib target in lymphoid malignancies such as multiple myeloma. NF-kB activation has not been extensively assessed in other lymphoid malignancies such as MCL. NF-kB complexes (heterodimers P50/P65) were assessed by EMSA assays in REC GRANTA 519, NCEB, JEKO, JUN and UPN1 MCL cell-lines. EBV was present in 3/6 cell lines. P50/P65 complexes were detected in all EBV positive cell lines and only in 1/3 EBV negative cell-lines (JEKO). No nuclear P65 protein was detected by immunofluorescence or Western-blot analysis in the 2 other negative EBV cell lines (REC and UPN1). NF-kB transcriptional activity was measured by a luciferase-based reporter gene assay. Spontaneous NF-kB activity was low in UPN1, REC and JEKO compared to GRANTA 519 EBV positive cell-line (3 to 4 time lower) but can be strongly activated (up to 10 fold) using MEKK cotransfection assay. This suggest that NF-kB is functional, but not constitutively activated. Stable infections with Migr1-IRES-GFP IkBM (dominant negative IKB) or empty vector, were performed in GRANTA 519 EBV positive as well as in UPN1 cell line. No differences in proliferation or apoptosis were observed in UPN1 stably infected with IkBM or with the empty vector but GRANTA 519 EBV positive showed increased apoptosis and proliferation inhibition when infected with IkBM. Likewise, no P50/P65 heterodimers complexes were detected by EMSA in 4 patients with MCL. In vitro assays showed that UPN1 and JEKO cell lines had comparable sensitivities to Bortezomib than Multiple myeloma cell lines reported in the literature (IC 50: 6 nM and 12 nM respectively). This was also true for the 3 patients lymphoma cells assessed in vitro (12 nM). Taken together these results suggest that canonical NF-kB activation pathway is not constitutively active in EBV negative MCL cell lines and patients samples and could be associated with EBV infection in some MCL cell-lines. Therefore, this strongly suggests that Bortezomib target other molecules in MCL.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1945-1945
Author(s):  
Kylee H Maclachlan ◽  
Andrew Cuddihy ◽  
Nadine Hein ◽  
Carleen Cullinane ◽  
Simon J. Harrison ◽  
...  

Abstract Background: Multiple myeloma (MM) requires combination drug therapies to delay acquired drug resistance and clinical relapse. We co-developed CX-5461, a highly-selective inhibitor of RNA polymerase I-mediated rDNA transcription(1), currently in phase I trials for relapsed haematological malignancies (Peter Mac). CX-5461 produces a targeted nucleolar DNA damage response (DDR), triggering both a p53-dependent and -independent nucleolar stress response and killing malignant cells while sparing normal cells(2,3). Single-agent CX-5461 provides an impressive survival benefit in mouse models of B-cell lymphoma, acute myeloid leukaemia and now MM(2,4,5). However, drug resistance eventually occurs, confirming the need for combination therapies. Aim: To test the efficacy of CX-5461 in combination with the histone deacetylase inhibitor panobinostat, (prioritised from a boutique high-throughput screen of anti-myeloma agents), with a focus on the setting of resistance to proteasome-inhibitors (PIs). Methods: We assessed the impact of CX-5461 and panobinostat on overall survival in mouse models of MM, then surveyed the effects on cellular response and molecular markers of DDR. We developed bortezomib-resistant cell lines and an in vivo model of bortezomib-resistance to test this combination in the setting of PI-resistance. Results: CX-5461 in combination with panobinostat provides a significant survival advantage in both the transplanted Vk*MYC and the 5T33/KaLwRij models, with minimal bone marrow toxicity. The combination showed increased anti-proliferative effects and cell death in vitro. Interestingly, experiments interrogating the downstream cellular response of this combination suggest that the mechanism(s) driving synergy are complex and cell context-dependent. Cell cycle analysis indicates that both CX-5461- and panobinostat-driven cell cycle effects, i.e. G2/M and G1/S arrest, respectively, are dominant in the combination setting in a cell line-dependent manner, suggesting that context-dependent factors such as p53 may influence the cellular response. Mechanistically, in both p53-wild type and -null cell lines we observe an increase in DDR signalling with single agent CX-5461, with only moderate further increase with the combination. Moreover, CX-5461-mediated MYC downregulation is not universally observed, with the combination promoting further downregulation only in some cell lines. Given the potential for affecting global transcription programs downstream of panobinostat, we are performing transcriptome analyses in the combination setting compared to single agent treatment. We have generated bortezomib-resistant cell lines, sequentially increasing drug exposure to establish populations growing at concentrations above the IC90 of the parental lines. The resistant 5T33 cells retain their resistance to bortezomib in vivo and we have demonstrated that CX-5461 remains effective in this model, significantly increasing survival. We are currently examining the combination of CX-5461 with panobinostat in this model of bortezomib-resistance, which will give critical information guiding patient selection for future clinical trials. Conclusion: The rDNA transcription inhibitor CX-5461 synergises in vitro and in vivo with panobinostat, and CX-5461 retains efficacy in the setting of bortezomib-resistant myeloma. References Drygin et al., Cancer Research 2011 Bywater et al., Cancer Cell 2012 Quin et al, Oncotarget, 2016 Devlin et al., Cancer Discovery 2016 Hein et al., Blood 2017 Disclosures Harrison: Janssen-Cilag: Other: Scientific advisory board.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 271-271
Author(s):  
Matthew S. McKinney ◽  
Anne W Beaven ◽  
Andrea Moffitt ◽  
Jason Landon Smith ◽  
Eric Lock ◽  
...  

Abstract Background: HDAC inhibitors (HDACi) are being investigated as treatment for relapsed/refractory non Hodgkin lymphoma (NHL) and other cancers. However, the mechanisms underlying sensitivity and resistance to HDAC inhibition in lymphomas have not been fully characterized. We probed the cellular and molecular response to HDACi in vitro and in vivo in order to determine factors that dictate the response to HDACi and to enable design of approaches to incorporate HDACi into novel combination therapeutics. Methods: High-throughput cytotoxicity screening was performed using two different HDAC inhibitors, LBH589 (panobinostat) and SAHA (vorinostat) in 52 lymphoid cell lines characterized through RNA-seq and microarray gene expression profiling. This screen revealed a greater than 50-fold range in concentration needed to induce cytotoxicity for the 2 different HDAC inhibitors and there was moderate correlation between the 2 compounds in this panel (Pearson correlation r = 0.76, p < 0.01). By pairing this chemosensitivity data with gene expression profiles of the screened cell lines, we developed a gene expression classifier for LBH589 that identified resistant and sensitive cell line groups. This predictor was applied to B-cell NHL cell lines tested with LBH589 in the Cancer Cell Line Encyclopedia (CCLE) and we found that the sensitive and resistant cell line groups distinguished by this method differed more than 5-fold in IC50 (0.021 vs. 1.24 nM, P < 0.01 by Wilcoxon rank sum), thus validating the ability of this approach to distinguish HDACi resistant cell lines. We further initiated a clinical trial of LBH589 in relapsed/refractory diffuse large B cell lymphoma patients combined with RNAseq profiling of their tumors prior to embarking on treatment. We treated nine patients with LBH589, and application of our response predictor to scaled RNAseq gene expression data revealed 4 predicted responders and 5 predicted non-responders. Two of the predicted responders had a clinical response to LBH589, whereas none of the predicted non-responders had a clinical response, thus our classifier was able to identify all of the LBH589-responsive patients from this cohort (P = 0.08 by Fisher's exact test). Analysis of differentially expressed molecular pathways in HDACi sensitive and resistant samples by gene set enrichment revealed the JAK-STAT pathway as the most differentially expressed pathway associated with HDACi resistance (at P < 0.001 and FDR < 0.20). We further identified a number of distinct mutations including STAT3, SOCS1 and JAK1 that were associated with activation of the JAK-STAT pathway by gene expression signatures and the LBH589 response signature in DLBCL cell lines and patient samples by analysis of RNA-seq data. Phosphoprotein analysis by Western blot and Sis-inducible-element (SIE) luciferase reporter assays were used to confirm JAK-STAT activation in these samples and we found that overexpression of STAT3 Src-homology domain mutations activated JAK-STAT3 signaling in isogenic cell lines and fostered resistance to LBH589 in vitro. Conversely, using in vivo DLBCL xenograft models, we found that combining JAK-STAT and HDAC inhibition by treatment with LBH589 and ruxolitinib resulted in synergistic reduction of tumor cell viability and tumor growth with tolerable toxicity in mice. Conclusions: Sustained JAK-STAT activation appears to mediate resistance to HDAC inhibition in DLBCL and other NHLs and several recurrent genetic lesions drive JAK-STAT activation in these diseases. This process can be overcome by JAK 1/2 inhibition with ruxolitinib and these findings demonstrate a role for combination therapy with HDAC inhibitors and small molecules targeting the JAK-STAT pathway in lymphoid malignancies. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document