scholarly journals Expression of Lineage Transcription Factors Identifies Differences in Transition States of Induced Human Oligodendrocyte Differentiation

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 241
Author(s):  
Florian J. Raabe ◽  
Marius Stephan ◽  
Jan Benedikt Waldeck ◽  
Verena Huber ◽  
Damianos Demetriou ◽  
...  

Oligodendrocytes (OLs) are critical for myelination and are implicated in several brain disorders. Directed differentiation of human-induced OLs (iOLs) from pluripotent stem cells can be achieved by forced expression of different combinations of the transcription factors SOX10 (S), OLIG2 (O), and NKX6.2 (N). Here, we applied quantitative image analysis and single-cell transcriptomics to compare different transcription factor (TF) combinations for their efficacy towards robust OL lineage conversion. Compared with S alone, the combination of SON increases the number of iOLs and generates iOLs with a more complex morphology and higher expression levels of myelin-marker genes. RNA velocity analysis of individual cells reveals that S generates a population of oligodendrocyte-precursor cells (OPCs) that appear to be more immature than those generated by SON and to display distinct molecular properties. Our work highlights that TFs for generating iOPCs or iOLs should be chosen depending on the intended application or research question, and that SON might be beneficial to study more mature iOLs while S might be better suited to investigate iOPC biology.

2021 ◽  
Author(s):  
Connie L Jiang ◽  
Yogesh Goyal ◽  
Naveen Jain ◽  
Qiaohong Wang ◽  
Rachel E Truitt ◽  
...  

Cardiac directed differentiation of human induced pluripotent stem cells consistently produces a mixed population of cardiomyocytes and non-cardiac cell types even when using very well-characterized protocols. We wondered whether differentiated cell types might result from intrinsic differences in hiPS cells prior to the onset of differentiation. By associating individual differentiated cells that share a common hiPS cell precursor, we were able to test whether expression variability in differentiated cells was pre-determined from the hiPS cell state. Although within a single experiment, differentiated cells that share an hiPS cell progenitor were more transcriptionally similar to each other than to other cells in the differentiated population, when the same hiPS cells were differentiated in parallel, we did not observe high transcriptional similarity across differentiations. Additionally, we found that substantial cell death occurred during differentiation in a manner that suggested that all cells were equally likely to survive or die, suggesting that there was no intrinsic selection bias for cells descended from particular hiPS cell progenitors. These results led us to wonder about how cells grow out spatially during the directed differentiation process. Labeling cells by their expression of a few canonical cell type marker genes, we showed that cells expressing the same marker tended to occur in patches observable by visual inspection, suggesting that cell type determination across multiple cell types, once initiated, is maintained in a cell-autonomous manner for multiple divisions. Altogether, our results show that while there is substantial heterogeneity in the initial hiPS cell population, that heterogeneity is not responsible for heterogeneous outcomes, and that the window during which cell type specification occurs is likely to begin shortly after the seeding of hiPS cells for differentiation.


2010 ◽  
Vol 34 (8) ◽  
pp. S36-S36
Author(s):  
Ping Duan ◽  
Xuelin Ren ◽  
Wenhai Yan ◽  
Xuefei Han ◽  
Xu Yan ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bei Liu ◽  
Shi Chen ◽  
Yaxing Xu ◽  
Yulin Lyu ◽  
Jinlin Wang ◽  
...  

AbstractExtended pluripotent stem (EPS) cells have shown great applicative potentials in generating synthetic embryos, directed differentiation and disease modeling. However, the lack of a xeno-free culture condition has significantly limited their applications. Here, we report a chemically defined and xeno-free culture system for culturing and deriving human EPS cells in vitro. Xeno-free human EPS cells can be long-term and genetically stably maintained in vitro, as well as preserve their embryonic and extraembryonic developmental potentials. Furthermore, the xeno-free culturing system also permits efficient derivation of human EPS cells from human fibroblast through reprogramming. Our study could have broad utility in future applications of human EPS cells in biomedicine.


Author(s):  
Kee-Pyo Kim ◽  
Dong Wook Han ◽  
Johnny Kim ◽  
Hans R. Schöler

AbstractEctopic expression of Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). Attempts to identify genes or chemicals that can functionally replace each of these four reprogramming factors have revealed that exogenous Oct4 is not necessary for reprogramming under certain conditions or in the presence of alternative factors that can regulate endogenous Oct4 expression. For example, polycistronic expression of Sox2, Klf4 and c-Myc can elicit reprogramming by activating endogenous Oct4 expression indirectly. Experiments in which the reprogramming competence of all other Oct family members tested and also in different species have led to the decisive conclusion that Oct proteins display different reprogramming competences and species-dependent reprogramming activity despite their profound sequence conservation. We discuss the roles of the structural components of Oct proteins in reprogramming and how donor cell epigenomes endow Oct proteins with different reprogramming competences.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Jieyun Hong ◽  
Shijun Li ◽  
Xiaoyu Wang ◽  
Chugang Mei ◽  
Linsen Zan

Sirtuins, NAD+-dependent deacylases and ADP-ribosyltransferases, are critical regulators of metabolism involved in many biological processes, and are involved in mediating adaptive responses to the cellular environment. SIRT4 is a mitochondrial sirtuin and has been shown to play a critical role in maintaining insulin secretion and glucose homeostasis. As a regulator of lipid homeostasis, SIRT4 can repress fatty acid oxidation and promote lipid anabolism in nutrient-replete conditions. Using real-time quantitative PCR (qPCR) to explore the molecular mechanisms of transcriptional regulation of bovine SIRT4 during adipocyte differentiation, we found that bovine SIRT4 is expressed at high levels in bovine subcutaneous adipose tissue. SIRT4 knockdown led to decreased expression of adipogenic differentiation marker genes during adipocyte differentiation. The core promoter of bovine SIRT4 was identified in the −402/−60 bp region of the cloned 2-kb fragment containing the 5′-regulatory region. Binding sites were identified in this region for E2F transcription factor-1 (E2F1), CCAAT/enhancer-binding protein β (CEBPβ), homeobox A5 (HOXA5), interferon regulatory factor 4 (IRF4), paired box 4 (PAX4), and cAMP responsive element-binding protein 1 (CREB1) by using Electrophoretic mobility shift assay (EMSA) and luciferase reporter gene assay. We also found that E2F1, CEBPβ, and HOXA5 transcriptionally activate SIRT4 expression, whereas, IRF4, PAX4, and CREB1 transcriptionally repress SIRT4 expression. We further verified that SIRT4 knockdown could affect the ability of these transcription factors (TFs) to regulate the differentiation of bovine adipocytes. In conclusion, our results shed light on the mechanisms underlying the transcriptional regulation of SIRT4 expression in bovine adipocytes.


2017 ◽  
Vol 12 (9) ◽  
pp. 1890-1900 ◽  
Author(s):  
Xiaoping Bao ◽  
Xiaojun Lian ◽  
Tongcheng Qian ◽  
Vijesh J Bhute ◽  
Tianxiao Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document