scholarly journals Commonly Used Pancreatic Stellate Cell Cultures Differ Phenotypically and in Their Interactions with Pancreatic Cancer Cells

Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 23 ◽  
Author(s):  
Daniela Lenggenhager ◽  
Manoj Amrutkar ◽  
Petra Sántha ◽  
Monica Aasrum ◽  
Johannes-Matthias Löhr ◽  
...  

Activated pancreatic stellate cells (PSCs) play a central role in the tumor stroma of pancreatic ductal adenocarcinoma (PDAC). Given the limited availability of patient-derived PSCs from PDAC, immortalized PSC cell lines of murine and human origin have been established; however, it is not elucidated whether differences in species, organ disease status, donor age, and immortalization alter the PSC phenotype and behavior compared to that of patient-derived primary PSC cultures. Therefore, a panel of commonly used PSC cultures was examined for important phenotypical and functional features: three primary cultures from human PDAC, one primary from normal human pancreas, and three immortalized (one from human, two from murine pancreas). Growth rate was considerably lower in primary PSCs from human PDAC. Basal collagen synthesis varied between the PSC cultures, and TGF-β stimulation increased collagen synthesis only in non-immortalized cultures. Differences in secretome composition were observed along with a divergence in the DNA synthesis, migration, and response to gemcitabine of PDAC cell lines that were grown in conditioned medium from the various PSC cultures. The findings reveal considerable differences in features and functions that are key to PSCs and in the interactions with PDAC. These observations may be relevant to researchers when selecting the most appropriate PSC culture for their experiments.

2020 ◽  
Author(s):  
Shatovisha Dey ◽  
Sheng Liu ◽  
Tricia D Factora ◽  
Solaema Taleb ◽  
Primavera Riverahernandez ◽  
...  

Abstract BackgroundPancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive forms of malignancies with a nearly equal incidence and mortality rates in patients. Pancreatic stellate cells (PSCs) are critical players in PDAC microenvironment to promote the aggressiveness and pathogenesis of the disease. Dysregulation of microRNAs (miRNAs) have been shown to play a significant role in progression of PDAC. Earlier, we observed a PSC-specific downregulation of miR-29a in PDAC pancreas, however, the mechanism of action of the molecule in PSCs is still to be elucidated. The current study aims to clarify the regulation of miR-29a in PSCs and identifies functionally important downstream targets that contribute to tumorigenic activities during PDAC progression. MethodsIn this study, using RNAseq approach, we performed transcriptome analysis of paired miR-29a overexpressing hPSC cells and controls. Enrichment analysis was performed with the identified differentially expressed genes (DEGs). miR-29a targets in the dataset were identified, which were utilized to create network interactions. Western blots were performed with the top candidate miR-29a targets in hPSC cells transfected with miR-29a mimic or scramble control. ResultsRNAseq analysis identified 202 differentially expressed genes, which included 19 downregulated direct miR-29a targets. Translational repression of eight key pro-tumorigenic and -fibrotic targets namely IGF-1, COL5A3, CLDN1, E2F7, MYBL2, ITGA6 and ADAMTS2 by miR-29a was observed in PSCs. Using pathway analysis, we find that miR-29a modulates effectors of IGF-1-p53 signaling in PSCs that may hinder carcinogenesis. We further observe a regulatory role of the molecule in pathways associated with PDAC ECM remodeling and tumor-stromal crosstalk, such as INS/IGF-1, RAS/MAPK, laminin interactions and collagen biosynthesis. ConclusionsTogether, our study presents a comprehensive understanding of miR-29a regulation of PSCs, and identifies essential pathways associated with PSC-mediated PDAC pathogenesis. The findings suggest an anti-tumorigenic role of miR-29a in the context of PSC-tumor cell crosstalk and advocates for the potential of the molecule in PDAC targeted therapies.


2020 ◽  
Author(s):  
Shatovisha Dey ◽  
Sheng Liu ◽  
Tricia D Factora ◽  
Solaema Taleb ◽  
Primavera Riverahernandez ◽  
...  

Abstract Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive forms of malignancies with a nearly equal incidence and mortality rates in patients. Pancreatic stellate cells (PSCs) are critical players in PDAC microenvironment to promote the aggressiveness and pathogenesis of the disease. Dysregulation of microRNAs (miRNAs) have been shown to play a significant role in progression of PDAC. Earlier, we observed a PSC-specific downregulation of miR-29a in PDAC pancreas, however, the mechanism of action of the molecule in PSCs is still to be elucidated. The current study aims to clarify the regulation of miR-29a in PSCs and identifies functionally important downstream targets that contribute to tumorigenic activities during PDAC progression. Methods In this study, using RNAseq approach, we performed transcriptome analysis of paired miR-29a overexpressing hPSC cells and controls. Enrichment analysis was performed with the identified differentially expressed genes (DEGs). miR-29a targets in the dataset were identified, which were utilized to create network interactions. Western blots were performed with the top candidate miR-29a targets in hPSC cells transfected with miR-29a mimic or scramble control. Results RNAseq analysis identified 202 differentially expressed genes, which included 19 downregulated direct miR-29a targets. Translational repression of eight key pro-tumorigenic and -fibrotic targets namely IGF-1, COL5A3, CLDN1, E2F7, MYBL2, ITGA6 and ADAMTS2 by miR-29a was observed in PSCs. Using pathway analysis, we find that miR-29a modulates effectors of IGF-1-p53 signaling in PSCs that may hinder carcinogenesis. We further observe a regulatory role of the molecule in pathways associated with PDAC ECM remodeling and tumor-stromal crosstalk, such as INS/IGF-1, RAS/MAPK, laminin interactions and collagen biosynthesis. Conclusions Together, our study presents a comprehensive understanding of miR-29a regulation of PSCs, and identifies essential pathways associated with PSC-mediated PDAC pathogenesis. The findings suggest an anti-tumorigenic role of miR-29a in the context of PSC-tumor cell crosstalk and advocates for the potential of the molecule in PDAC targeted therapies.


2020 ◽  
Author(s):  
Shatovisha Dey ◽  
Sheng Liu ◽  
Tricia D Factora ◽  
Solaema Taleb ◽  
Primavera Riverahernandez ◽  
...  

Abstract Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive forms of malignancies with a nearly equal incidence and mortality rates in patients. Pancreatic stellate cells (PSCs) are critical players in PDAC microenvironment to promote the aggressiveness and pathogenesis of the disease. Dysregulation of microRNAs (miRNAs) have been shown to play a significant role in progression of PDAC. Earlier, we observed a PSC-specific downregulation of miR-29a in PDAC pancreas, however, the mechanism of action of the molecule in PSCs is still to be elucidated. The current study aims to clarify the regulation of miR-29a in PSCs and identifies functionally important downstream targets that contribute to tumorigenic activities during PDAC progression. Methods In this study, using RNAseq approach, we performed transcriptome analysis of paired miR-29a overexpressing hPSC cells and controls. Enrichment analysis was performed with the identified differentially expressed genes (DEGs). miR-29a targets in the dataset were identified, which were utilized to create network interactions. Western blots were performed with the top candidate miR-29a targets in hPSC cells transfected with miR-29a mimic or scramble control. Results RNAseq analysis identified 202 differentially expressed genes, which included 19 downregulated direct miR-29a targets. Translational repression of eight key pro-tumorigenic and -fibrotic targets namely IGF-1, COL5A3, CLDN1, E2F7, MYBL2, ITGA6 and ADAMTS2 by miR-29a was observed in PSCs. Using pathway analysis, we find that miR-29a modulates effectors of IGF-1-p53 signaling in PSCs that may hinder carcinogenesis. We further observe a regulatory role of the molecule in pathways associated with PDAC ECM remodeling and tumor-stromal crosstalk, such as INS/IGF-1, RAS/MAPK, laminin interactions and collagen biosynthesis. Conclusions Together, our study presents a comprehensive understanding of miR-29a regulation of PSCs, and identifies essential pathways associated with PSC-mediated PDAC pathogenesis. The findings suggest an anti-tumorigenic role of miR-29a in the context of PSC-tumor cell crosstalk and advocates for the potential of the molecule in PDAC targeted therapies.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2763
Author(s):  
Tony C. Y. Pang ◽  
Zhihong Xu ◽  
Alpha Raj Mekapogu ◽  
Srinivasa Pothula ◽  
Therese Becker ◽  
...  

Background: Inhibition of hepatocyte growth factor (HGF)/c-MET pathway, a major mediator of pancreatic stellate cell (PSC)−PC cell interactions, retards local and distant cancer progression. This study examines the use of this treatment in preventing PC progression after resection. We further investigate the postulated existence of circulating PSCs (cPSCs) as a mediator of metastatic PC. Methods: Two orthotopic PC mouse models, produced by implantation of a mixture of luciferase-tagged human pancreatic cancer cells (AsPC-1), and human PSCs were used. Model 1 mice underwent distal pancreatectomy 3-weeks post-implantation (n = 62). One-week post-resection, mice were randomised to four treatments of 8 weeks: (i) IgG, (ii) gemcitabine (G), (iii) HGF/c-MET inhibition (HiCi) and (iv) HiCi + G. Tumour burden was assessed longitudinally by bioluminescence. Circulating tumour cells and cPSCs were enriched by filtration. Tumours of Model 2 mice progressed for 8 weeks prior to the collection of primary tumour, metastases and blood for single-cell RNA-sequencing (scRNA-seq). Results: HiCi treatments: (1) reduced both the risk and rate of disease progression after resection; (2) demonstrated an anti-angiogenic effect on immunohistochemistry; (3) reduced cPSC counts. cPSCs were identified using immunocytochemistry (α-smooth muscle actin+, pan-cytokeratin−, CD45−), and by specific PSC markers. scRNA-seq confirmed the existence of cPSCs and identified potential genes associated with development into cPSCs. Conclusions: This study is the first to demonstrate the efficacy of adjuvant HGF/c-Met inhibition for PC and provides the first confirmation of the existence of circulating PSCs.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1643
Author(s):  
Sandy Anania ◽  
Raphaël Peiffer ◽  
Gilles Rademaker ◽  
Alexandre Hego ◽  
Marc Thiry ◽  
...  

Pancreas ductal adenocarcinoma is one of the deadliest cancers where surgery remains the main survival factor. Mitochondria were described to be involved in tumor aggressiveness in several cancer types including pancreas cancer. We have previously reported that myoferlin controls mitochondrial structure and function, and demonstrated that myoferlin depletion disturbs the mitochondrial dynamics culminating in a mitochondrial fission. In order to unravel the mechanism underlying this observation, we explored the myoferlin localization in pancreatic cancer cells and showed a colocalization with the mitochondrial dynamic machinery element: mitofusin. This colocalization was confirmed in several pancreas cancer cell lines and in normal cell lines as well. Moreover, in pancreas cancer cell lines, it appeared that myoferlin interacted with mitofusin. These discoveries open-up new research avenues aiming at modulating mitofusin function in pancreas cancer.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3628
Author(s):  
Manoj Amrutkar ◽  
Nils Tore Vethe ◽  
Caroline S. Verbeke ◽  
Monica Aasrum ◽  
Anette Vefferstad Finstadsveen ◽  
...  

Gemcitabine resistance in pancreatic ductal adenocarcinoma (PDAC) is attributed to cancer cell-intrinsic drug processing and the impact of the tumor microenvironment, especially pancreatic stellate cells (PSCs). This study uses human PDAC-derived paired primary cancer cells (PCCs) and PSCs from four different tumors, and the PDAC cell lines BxPC-3, Mia PaCa-2, and Panc-1, to assess the fate of gemcitabine by measuring its cellular uptake, cytotoxicity, and LC-MS/MS-based metabolite analysis. Expression analysis and siRNA-mediated knockdown of key regulators of gemcitabine (hENT1, CDA, DCK, NT5C1A) was performed. Compared to PSCs, both the paired primary PCCs and cancer cell lines showed gemcitabine-induced dose-dependent cytotoxicity, high uptake, as well as high and variable intracellular levels of gemcitabine metabolites. PSCs were gemcitabine-resistant and demonstrated significantly lower drug uptake, which was not influenced by co-culturing with their paired PCCs. Expression of key gemcitabine regulators was variable, but overall strong in the cancer cells and significantly lower or undetectable in PSCs. In cancer cells, hENT1 inhibition significantly downregulated gemcitabine uptake and cytotoxicity, whereas DCK knockdown reduced cytotoxicity. In conclusion, heterogeneity in gemcitabine processing among different pancreatic cancer cells and stellate cells results from the differential expression of molecular regulators which determines the effect of gemcitabine.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Olga Michel ◽  
Julita Kulbacka ◽  
Jolanta Saczko ◽  
Justyna Mączyńska ◽  
Piotr Błasiak ◽  
...  

Despite the rapid progression of cancer pharmacotherapy, the high drug resistance of pancreatic ductal adenocarcinoma (PDA) makes it one of the most lethal malignancies. Therefore, there are high expectations associated with experimental therapies, such as electrochemotherapy (ECT). This technique involves the application of short electric pulses to induce transitional permeabilization of the cellular membrane, thus enhancing drug molecules influx. The aim of the study was to investigate the influence of electroporation with cisplatin (CisEP) on the primary culture of human PDA cells from lung metastases—their survival and stress response. Considering the growing importance of various research models, two established human PDA cell lines, EPP85-181P (sensitive to daunorubicin) and EPP85-181RDB (resistant to daunorubicin), were utilized as a reference control. Cisplatin revealed higher cytotoxicity towards established cell lines. Following CisEP application, we observed a significant decrease of cells viability in the primary culture model. After CisEP therapy, an increased immunoreactivity with SOD-2 and Casp-3 antibodies was noticed. In conclusion, we discovered that electroporation can enhance the cytotoxic effect of cisplatin in pancreatic cancer cellsin vitro. This effect was evident for cells from the primary culture. The obtained results confirm the importance of primary cells models in studies on the efficacy of experimental cancer therapies.


2021 ◽  
Author(s):  
Marium Rana ◽  
Alessio Perotti ◽  
Lucy Bisset ◽  
James Smith ◽  
Emma Lamben ◽  
...  

Abstract Pancreatic ductal adenocarcinoma (PDAC) is a disease that remains largely refractory to existing treatments including the nucleoside analogue gemcitabine. In the current study we demonstrate that the ferronucleoside 1-(S,Rp) is cytotoxic in a panel of PDAC cell lines including gemcitabine resistant MIAPaCa2, with IC50 values comparable to cisplatin. Biochemical studies show that the mechanism of action is inhibition of DNA-replication, S-phase cell cycle arrest and stalling of DNA-replication forks which were directly observed at single molecule resolution by DNA-fibre fluorography. In agreement with this, transcriptional changes following treatment with 1-(S,Rp) include activation of three of the four genes (HUS1, RAD1, RAD17) of the 9-1-1 check point complex clamp and two of the three genes (MRE11, NBN) that form the MRN complex as well as activation of multiple downstream targets. Furthermore, there was evidence of phosphorylation of checkpoint kinases 1 and 2 as well as RPA1 and gamma H2AX, all of which are considered biochemical markers of replication stress. Studies in p53 deficient cell lines showed activation of CDKN1A (p21) and GADD45A by 1-(S,Rp) was at least partially independent of p53. In conclusion, because of its potency and activity in gemcitabine resistant cells, 1-(S,Rp) is a promising candidate molecule for development of new treatments for PDAC.


2020 ◽  
Vol 19 (10) ◽  
pp. 1649-1663
Author(s):  
Svenja Wiechmann ◽  
Elena Saupp ◽  
Daniela Schilling ◽  
Stephanie Heinzlmeir ◽  
Günter Schneider ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers and known for its extensive genetic heterogeneity, high therapeutic resistance, and strong variation in intrinsic radiosensitivity. To understand the molecular mechanisms underlying radioresistance, we screened the phenotypic response of 38 PDAC cell lines to ionizing radiation. Subsequent phosphoproteomic analysis of two representative sensitive and resistant lines led to the reproducible identification of 7,800 proteins and 13,000 phosphorylation sites (p-sites). Approximately 700 p-sites on 400 proteins showed abundance changes after radiation in all cell lines regardless of their phenotypic sensitivity. Apart from recapitulating known radiation response phosphorylation markers such as on proteins involved in DNA damage repair, the analysis uncovered many novel members of a radiation-responsive signaling network that was apparent only at the level of protein phosphorylation. These regulated p-sites were enriched in potential ATM substrates and in vitro kinase assays corroborated 10 of these. Comparing the proteomes and phosphoproteomes of radiosensitive and -resistant cells pointed to additional tractable radioresistance mechanisms involving apoptotic proteins. For instance, elevated NADPH quinine oxidoreductase 1 (NQO1) expression in radioresistant cells may aid in clearing harmful reactive oxygen species. Resistant cells also showed elevated phosphorylation levels of proteins involved in cytoskeleton organization including actin dynamics and focal adhesion kinase (FAK) activity and one resistant cell line showed a strong migration phenotype. Pharmacological inhibition of the kinases FAK by Defactinib and of CHEK1 by Rabusertib showed a statistically significant sensitization to radiation in radioresistant PDAC cells. Together, the presented data map a comprehensive molecular network of radiation-induced signaling, improves the understanding of radioresistance and provides avenues for developing radiotherapeutic strategies.


2021 ◽  
Vol 10 ◽  
Author(s):  
Yang Wu ◽  
Chun Zhang ◽  
Kuirong Jiang ◽  
Jens Werner ◽  
Alexandr V. Bazhin ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is a gastrointestinal malignancy with a dismal clinical outcome. Accumulating evidence suggests that activated pancreatic stellate cells (PSCs), the major producers of extracellular matrix (ECM), drive the severe stromal/desmoplastic reaction in PDAC. Furthermore, the crosstalk among PSCs, pancreatic cancer cells (PCCs) as well as other stroma cells can establish a growth-supportive tumor microenvironment (TME) of PDAC, thereby enhancing tumor growth, metastasis, and chemoresistance via various pathways. Recently, targeting stroma has emerged as a promising strategy for PDAC therapy, and several novel strategies have been proposed. The aim of our study is to give a profound review of the role of PSCs in PDAC progression and recent advances in stroma-targeting strategies.


Sign in / Sign up

Export Citation Format

Share Document