scholarly journals Sec20 is Required for Autophagic and Endocytic Degradation Independent of Golgi-ER Retrograde Transport

Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 768
Author(s):  
Lakatos ◽  
Lőrincz ◽  
Szabó ◽  
Benkő ◽  
Kenéz ◽  
...  

Endocytosis and autophagy are evolutionarily conserved degradative processes in all eukaryotes. Both pathways converge to the lysosome where cargo is degraded. Improper lysosomal degradation is observed in many human pathologies, so its regulatory mechanisms are important to understand. Sec20/BNIP1 (BCL2/adenovirus E1B 19 kDa protein-interacting protein 1) is a BH3 (Bcl-2 homology 3) domain-containing SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptors) protein that has been suggested to promote Golgi-ER retrograde transport, mitochondrial fission, apoptosis and mitophagy in yeast and vertebrates. Here, we show that loss of Sec20 in Drosophila fat cells causes the accumulation of autophagic vesicles and prevents proper lysosomal acidification and degradation during bulk, starvation-induced autophagy. Furthermore, Sec20 knockdown leads to the enlargement of late endosomes and accumulation of defective endolysosomes in larval Drosophila nephrocytes. Importantly, the loss of Syx18 (Syntaxin 18), one of the known partners of Sec20, led to similar changes in nephrocytes and fat cells. Interestingly. Sec20 appears to function independent of its role in Golgi-ER retrograde transport in regulating lysosomal degradation, as the loss of its other partner SNAREs Use1 (Unconventional SNARE In The ER 1) and Sec22 or tethering factor Zw10 (Zeste white 10), which function together in the Golgi-ER pathway, does not cause defects in autophagy or endocytosis. Thus, our data identify a potential new transport route specific to lysosome biogenesis and function.

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Peggy Robinet ◽  
Jonathan D Smith

In a previous study, we identified autolysosome formation as the limiting step for turnover of cholesterol esters in lipid droplets of macrophage foam cells from the atherosclerosis sensitive DBA/2 strain compared to the atherosclerosis resistant AKR mouse strain. As autophagosome formation was similar in these two strains, we wanted to evaluate the role of lysosome biogenesis and function on autolysosome formation in AKR and DBA/2 cells. The transcription factor TFEB is a key regulator for lysosome biogenesis and function that positively regulates the expression of lysosomal enzymes and structural proteins, and controls lysosomes number. For all our studies, we cultured AKR and DBA/2 macrophages with or without acetylated LDL (AcLDL) for 24h. First, we analyzed TFEB protein expression by western blot. Upon loading, TFEB was increased in AKR (48%, p<0.01) but not DBA/2 cells leading to a 45% higher TFEB level in AKR vs. DBA/2 foam cells (p<0.05), suggesting that lysosome number and function may be impaired in DBA/2 foam cells. To assess lysosome function and number, cells were labeled with Lysotracker red DND-99 (LyT) and analyzed by flow cytometry. We found that AcLDL loading did not affect LyT intensity. However, in both unloaded and loaded conditions, DBA/2 cells exhibited a 30 to 50% lower LyT intensity suggesting that they have intrinsically decreased lysosome number/function. Lysosomal degradation capacity was assayed by incubation with DQ-ovalbumin and we observed a 27% decrease in lysosome function in DBA/2 vs. AKR foam cells (p<0.01). In addition, upon loading, the mature form of cathepsin L was increased in AKR (43%, p<0.05) but not DBA/2 cells. Together these data suggest an impairment of lysosomal degradation capacity in DBA/2 foam cells. Finally, we investigated the role of TPC2, a lysosomal membrane protein which over expression has been previously linked to a defect in autolysosome formation. We found that upon AcLDL loading TPC2 protein levels were increased by 35% in DBA/2 cells, which are defective in autolysosome formation, while they were unchanged in AKR cells. In conclusion, we found that DBA/2 vs. AKR foam cells express more TPC2 and have fewer and/or dysfunctional lysosomes that may explain the autolysosome formation defect in these cells.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Peggy Robinet ◽  
Jonathan D Smith

In a previous study, we identified autolysosome formation as the limiting step for turnover of cholesterol esters in lipid droplets of macrophage foam cells from the atherosclerosis sensitive DBA/2 strain compared to the atherosclerosis resistant AKR mouse strain. As autophagosome formation was similar in these two strains, we wanted to evaluate the role of lysosomes in autolysosome formation in AKR and DBA/2 cells. For all our studies, we cultured AKR and DBA/2 bone marrow-derived macrophages with or without acetylated LDL (AcLDL) for 24h. Lysosome function and number, assessed by flow cytometry on Lysotracker red DND-99 (LyT) labeled cells, was not affected by AcLDL loading in AKR and DBA/2 cells. However, in both unloaded and loaded conditions, DBA/2 cells exhibited a 30 to 50% lower LyT intensity suggesting that they have intrinsically decreased lysosome number/function. Lysosomal degradation capacity was assayed by incubation with DQ-ovalbumin and we observed a 27% decrease in lysosome function in DBA/2 vs. AKR foam cells (p<0.01). The impairment of lysosomal degradation was confirmed by 44.8% decreased levels of cathepsin L mature form in DBA/2 vs. AKR foam cells (p<0.05). As the transcription factor TFEB is a key regulator for lysosome biogenesis and function, we studied this factor in our system. First, we analyzed TFEB protein expression by western blot. Upon cholesterol loading, TFEB was induced in AKR (48%, p<0.01) but not DBA/2 cells leading to a 45% higher TFEB levels in AKR vs. DBA/2 foam cells (p<0.05). A preliminary evaluation of TFEB turnover by western blot also revealed that, upon loading, TFEB half-life is twice as long in AKR vs. DBA/2 macrophages (10.1h and 4.8h, respectively). Finally, we investigated TFEB nuclear translocation by immunofluorescence. AKR and DBA/2 macrophages were labeled with an antibody against TFEB and the percentage of TFEB positive nuclei was assessed. After 24h AcLDL loading, only 26% of DBA/2 nuclei contained TFEB vs. 48% for AKR nuclei (p=0.0002 by Fisher’s exact test). In conclusion, we found that DBA/2 vs. AKR foam cells have altered TFEB processing that may explain the altered lysosome number and function. This may result in the autolysosome formation defect in the DBA/2 foam cells.


2019 ◽  
Vol 317 (6) ◽  
pp. L758-L767 ◽  
Author(s):  
Shi Pan ◽  
Sushrut D. Shah ◽  
Reynold A. Panettieri ◽  
Deepak A. Deshpande

Increased airway smooth muscle (ASM) mass is a key contributor to airway narrowing and airway hyperresponsiveness in asthma. Besides conventional pathways and regulators of ASM proliferation, recent studies suggest that changes in mitochondrial morphology and function play a role in airway remodeling in asthma. In this study, we aimed at determining the role of mitochondrial Bcl-2 adenovirus E1B 19 kDa-interacting protein, Bnip3, in the regulation of ASM proliferation. Bnip3 is a member of the Bcl-2 family of proteins critical for mitochondrial health, mitophagy, and cell survival/death. We found that Bnip3 expression is upregulated in ASM cells from asthmatic donors compared with that in ASM cells from healthy donors and transient downregulation of Bnip3 expression in primary human ASM cells using an siRNA approach decreased cell adhesion, migration, and proliferation. Furthermore, Bnip3 downregulation altered the structure (electron density) and function (cellular ATP levels, membrane potential, and reacitve oxygen species generation) of mitochondria and decreased expression of cytoskeleton proteins vinculin, paxillin, and actinin. These findings suggest that Bnip3 via regulation of mitochondria functions and expression of adhesion proteins regulates ASM adhesion, migration, and proliferation. This study reveals a novel role for Bnip3 in ASM functions and establishes Bnip3 as a potential target in mitigating ASM remodeling in asthma.


2011 ◽  
Vol 301 (5) ◽  
pp. H1924-H1931 ◽  
Author(s):  
Youngil Lee ◽  
Hwa-Youn Lee ◽  
Rita A. Hanna ◽  
Åsa B. Gustafsson

The Bcl2/adenovirus E1B 19-kDa interacting protein 3 (Bnip3) is an atypical BH3-only protein that is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of mitochondrial autophagy, and in this study we have investigated the mechanisms by which Bnip3 induces autophagy in cardiac myocytes. We found that Bnip3 induced mitochondrial translocation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission in adult myocytes. Drp1-mediated mitochondrial fission correlated with increased autophagy, and inhibition of Drp1 reduced Bnip3-mediated autophagy. Overexpression of Drp1K38E, a dominant negative of Drp1, or mitofusin 1 prevented mitochondrial fission and autophagy by Bnip3. Also, inhibition of mitochondrial fission or autophagy resulted in increased death of myocytes overexpressing Bnip3. Moreover, Bnip3 promoted translocation of the E3 ubiquitin ligase Parkin to mitochondria, which was prevented in the presence of a Drp1 inhibitor. Interestingly, induction of autophagy by Bnip3 was reduced in Parkin-deficient myocytes. Thus our data suggest that induction of autophagy in response to Bnip3 is a protective response activated by the cell that involves Drp1-mediated mitochondrial fission and recruitment of Parkin.


2021 ◽  
Author(s):  
Piyali Majumder ◽  
Daisy Edmison ◽  
Catherine Rodger ◽  
Evan Reid ◽  
Swetha Gowrishankar

The adaptor protein complex-4 or AP-4 is known to mediate autophagosome maturation through regulating sorting of transmembrane cargo such as ATG9A at the Golgi. There is a need to understand AP-4 function in neurons, as mutations in any of its four subunits cause a complex form of hereditary spastic paraplegia (HSP) with intellectual disability. While AP-4 has been implicated in regulating trafficking and distribution of cargo such as ATG9A and APP, little is known about its effect on neuronal lysosomal protein traffic, lysosome biogenesis and function. In this study, we demonstrate that in human iPSC-derived neurons AP-4 regulates lysosome composition, function and transport via regulating export of critical lysosomal receptors, including Sortilin 1, from the trans-Golgi network to endo-lysosomes. Additionally, loss of AP-4 causes endo-lysosomes to stall and build up in axonal swellings potentially through reduced recruitment of retrograde transport machinery to the organelle. These findings of axonal lysosome build-up are highly reminiscent of those observed in Alzheimer disease as well as in neurons modelling the most common form of HSP, caused by spastin mutations. Our findings implicate AP-4 as a critical regulator of neuronal lysosome biogenesis and altered lysosome function and axonal endo-lysosome transport as an underlying defect in AP-4 deficient HSP.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Samuel J. Rodgers ◽  
Lisa M. Ooms ◽  
Viola M. J. Oorschot ◽  
Ralf B. Schittenhelm ◽  
Elizabeth V. Nguyen ◽  
...  

AbstractINPP4B suppresses PI3K/AKT signaling by converting PI(3,4)P2 to PI(3)P and INPP4B inactivation is common in triple-negative breast cancer. Paradoxically, INPP4B is also a reported oncogene in other cancers. How these opposing INPP4B roles relate to PI3K regulation is unclear. We report PIK3CA-mutant ER+ breast cancers exhibit increased INPP4B mRNA and protein expression and INPP4B increased the proliferation and tumor growth of PIK3CA-mutant ER+ breast cancer cells, despite suppression of AKT signaling. We used integrated proteomics, transcriptomics and imaging to demonstrate INPP4B localized to late endosomes via interaction with Rab7, which increased endosomal PI3Kα-dependent PI(3,4)P2 to PI(3)P conversion, late endosome/lysosome number and cargo trafficking, resulting in enhanced GSK3β lysosomal degradation and activation of Wnt/β-catenin signaling. Mechanistically, Wnt inhibition or depletion of the PI(3)P-effector, Hrs, reduced INPP4B-mediated cell proliferation and tumor growth. Therefore, INPP4B facilitates PI3Kα crosstalk with Wnt signaling in ER+ breast cancer via PI(3,4)P2 to PI(3)P conversion on late endosomes, suggesting these tumors may be targeted with combined PI3K and Wnt/β-catenin therapies.


Author(s):  
Juan Carlos Polanco ◽  
Gabriel Rhys Hand ◽  
Adam Briner ◽  
Chuanzhou Li ◽  
Jürgen Götz

AbstractThe microtubule-associated protein tau has a critical role in Alzheimer’s disease and other tauopathies. A proposed pathomechanism in the progression of tauopathies is the trans-synaptic spreading of tau seeds, with a role for exosomes which are secretory nanovesicles generated by late endosomes. Our previous work demonstrated that brain-derived exosomes isolated from tau transgenic rTg4510 mice encapsulate tau seeds with the ability to induce tau aggregation in recipient cells. We had also shown that exosomes can hijack the endosomal pathway to spread through interconnected neurons. Here, we reveal how tau seeds contained within internalized exosomes exploit mechanisms of lysosomal degradation to escape the endosome and induce tau aggregation in the cytosol of HEK293T-derived ‘tau biosensor cells’. We found that the majority of the exosome-containing endosomes fused with lysosomes to form endolysosomes. Exosomes induced their permeabilization, irrespective of the presence of tau seeds, or whether the exosomal preparations originated from mouse brains or HEK293T cells. We also found that permeabilization is a conserved mechanism, operating in both non-neuronal tau biosensor cells and primary neurons. However, permeabilization of endolysosomes only occurred in a small fraction of cells, which supports the notion that permeabilization occurs by a thresholded mechanism. Interestingly, tau aggregation was only induced in cells that exhibited permeabilization, presenting this as an escape route of exosomal tau seeds into the cytosol. Overexpression of RAB7, which is required for the formation of endolysosomes, strongly increased tau aggregation. Conversely, inhibition of lysosomal function with alkalinizing agents, or by knocking-down RAB7, decreased tau aggregation. Together, we conclude that the enzymatic activities of lysosomes permeabilize exosomal and endosomal membranes, thereby facilitating access of exosomal tau seeds to cytosolic tau to induce its aggregation. Our data underscore the importance of endosomal membrane integrity in mechanisms of cellular invasion by misfolded proteins that are resistant to lysosomal degradation.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
San Xu ◽  
Zhuan Zhou ◽  
Xingzhi Peng ◽  
Xuxiu Tao ◽  
Peijun Zhou ◽  
...  

AbstractStudies have indicated that dysfunction of autophagy is involved in the initiation and progression of multiple tumors and their chemoradiotherapy. Epstein–Barr virus (EBV) is a lymphotropic human gamma herpes virus that has been implicated in the pathogenesis of nasopharyngeal carcinoma (NPC). EBV encoded latent membrane protein1 (LMP1) exhibits the properties of a classical oncoprotein. In previous studies, we experimentally demonstrated that LMP1 could increase the radioresistance of NPC. However, how LMP1 contributes to the radioresistance in NPC is still not clear. In the present study, we found that LMP1 could enhance autophagy by upregulating the expression of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3). Knockdown of BNIP3 could increase the apoptosis and decrease the radioresistance mediated by protective autophagy in LMP1-positive NPC cells. The data showed that increased BNIP3 expression is mediated by LMP1 through the ERK/HIF1α signaling axis, and LMP1 promotes the binding of BNIP3 to Beclin1 and competitively reduces the binding of Bcl-2 to Beclin1, thus upregulating autophagy. Furthermore, knockdown of BNIP3 can reduce the radioresistance promoted by protective autophagy in vivo. These data clearly indicated that, through BNIP3, LMP1 induced autophagy, which has a crucial role in the protection of LMP1-positive NPC cells against irradiation. It provides a new basis and potential target for elucidating LMP1-mediated radioresistance.


2007 ◽  
Vol 292 (5) ◽  
pp. F1303-F1313 ◽  
Author(s):  
Xianhua Yi ◽  
Richard Bouley ◽  
Herbert Y. Lin ◽  
Shaliha Bechoua ◽  
Tian-xiao Sun ◽  
...  

The vasopressin type 2 receptor (V2R) is a G protein-coupled receptor that plays a central role in renal water reabsorption. Termination of ligand (vasopressin) stimulation is an important physiological regulatory event, but few proteins that interact with the V2R during downregulation after vasopressin (VP) binding have been identified. Using yeast two-hybrid screening of a human kidney cDNA library, we show that a 100-kDa protein called ALG-2-interacting protein X (Alix) interacts with the last 29 amino acids of the V2R COOH terminus. This was confirmed by pull-down assays using a GST-V2R-COOH-tail fusion protein. Alix was immunolocalized in principal cells of the kidney, which also express the V2R. The function of the Alix-V2R interaction was studied by transfecting Alix into LLC-PK1 epithelial cells expressing V2R-green fluorescent protein (GFP). Under basal conditions, V2R-GFP localized mainly at the plasma membrane. On VP treatment, V2R-GFP was internalized into perinuclear vesicles in the nontransfected cells. In contrast, V2R-GFP fluorescence was virtually undetectable 2 h after exposure to VP in cells that coexpressed Alix. Western blotting using an anti-GFP antibody showed marked degradation of the V2R after 2 h in the presence of VP and Alix, a time point at which little or no degradation was detected in the absence of Alix. In contrast, little or no degradation of the parathyroid hormone receptor was detectable in the presence or absence of Alix and/or the PTH ligand. The VP-induced disappearance of V2R-GFP was abolished by chloroquine, a lysosomal degradation inhibitor, but not by MG132, a proteosome inhibitor. These data suggest that Alix increases the rate of lysosomal degradation of V2R and may play an important regulatory role in the VP response by modulating V2R downregulation.


Sign in / Sign up

Export Citation Format

Share Document