scholarly journals Phase Diagram of Purified CNS Myelin Reveals Continuous Transformation between Expanded and Compacted Lamellar States

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 670
Author(s):  
Julio M. Pusterla ◽  
Emanuel Schneck ◽  
Rafael G. Oliveira

Purified myelin membranes (PMMs) are the starting material for biochemical studies, from individual components up to the isolation of detergent-resistant membrane (DRM) fractions or detergent-insoluble glycosphingolipid (DIG) fractions, which are commonly believed to resemble physiological lipid rafts. The normal DIG isolation protocol involves the extraction of lipids under moderate cooling. The isolation of PMMs also involves the cooling of myelin as well as exposure to low ionic strength (IS). Here, we addressed the combined influence of cooling and IS on the structure of PMMs. The phase behaviour was investigated by small angle X-ray diffraction. Analysis of the diffraction peaks revealed the lamellar periodicity ( d ), the number of periodically correlated bilayers ( N ), and the relatives fractions of each phase. Departure from physiological conditions induced a phase separation in myelin. The effect of monovalent and divalent ions was also compared at equivalent IS, showing a differential effect, and phase diagrams for both ion types were established—Ca2+ induced the well-known over-compacted phase, but additionally we also found an expanded phase at low IS. Na+ promoted phase separation, and also induced over-compaction at sufficiently high IS. Finally, exploring the whole phase diagram, we found evidence for the direct isothermal transformation from the expanded to the compacted phase, suggesting that both phases could in fact originate from the identical primary lateral phase separation, whereas the apparent difference lies in the inter-bilayer interaction that is modulated by the ionic milieu.

RSC Advances ◽  
2019 ◽  
Vol 9 (20) ◽  
pp. 11151-11159 ◽  
Author(s):  
Frederike Lehmann ◽  
Alexandra Franz ◽  
Daniel M. Többens ◽  
Sergej Levcenco ◽  
Thomas Unold ◽  
...  

The phase diagram elucidates structural changes and phase separation effects, induced by halide substitution in hybrid perovskite MAPb(I,Br)3 solid solution.


1997 ◽  
Vol 482 ◽  
Author(s):  
M. D. Mccluskey ◽  
L. T. Romano ◽  
B. S. Krusor ◽  
D. P. Bour ◽  
C. Chua ◽  
...  

AbstractEvidence is presented for phase separation in In0.27Ga0.73N/GaN multiple quantum wells (MQW's). After annealing for 4 min at a temperature of 1100 °C, the absorption threshold at 2.95 eV is replaced by a broad peak at 2.65 eV. This peak is attributed to the formation of Inrich InGaN phases in the active region. X-ray diffraction measurements show a shift in the diffraction peaks toward GaN, consistent with the formation of an In-poor phase.


Author(s):  
E. Loren Buhle ◽  
Pamela Rew ◽  
Ueli Aebi

While DNA-dependent RNA polymerase represents one of the key enzymes involved in transcription and ultimately in gene expression in procaryotic and eucaryotic cells, little progress has been made towards elucidation of its 3-D structure at the molecular level over the past few years. This is mainly because to date no 3-D crystals suitable for X-ray diffraction analysis have been obtained with this rather large (MW ~500 kd) multi-subunit (α2ββ'ζ). As an alternative, we have been trying to form ordered arrays of RNA polymerase from E. coli suitable for structural analysis in the electron microscope combined with image processing. Here we report about helical polymers induced from holoenzyme (α2ββ'ζ) at low ionic strength with 5-7 mM MnCl2 (see Fig. 1a). The presence of the ζ-subunit (MW 86 kd) is required to form these polymers, since the core enzyme (α2ββ') does fail to assemble into such structures under these conditions.


2020 ◽  
Vol 86 (6) ◽  
pp. 29-35
Author(s):  
V. P. Sirotinkin ◽  
O. V. Baranov ◽  
A. Yu. Fedotov ◽  
S. M. Barinov

The results of studying the phase composition of advanced calcium phosphates Ca10(PO4)6(OH)2, β-Ca3(PO4)2, α-Ca3(PO4)2, CaHPO4 · 2H2O, Ca8(HPO4)2(PO4)4 · 5H2O using an x-ray diffractometer with a curved position-sensitive detector are presented. Optimal experimental conditions (angular positions of the x-ray tube and detector, size of the slits, exposure time) were determined with allowance for possible formation of the impurity phases during synthesis. The construction features of diffractometers with a position-sensitive detector affecting the profile characteristics of x-ray diffraction peaks are considered. The composition for calibration of the diffractometer (a mixture of sodium acetate and yttrium oxide) was determined. Theoretical x-ray diffraction patterns for corresponding calcium phosphates are constructed on the basis of the literature data. These x-ray diffraction patterns were used to determine the phase composition of the advanced calcium phosphates. The features of advanced calcium phosphates, which should be taken into account during the phase analysis, are indicated. The powder of high-temperature form of tricalcium phosphate strongly adsorbs water from the environment. A strong texture is observed on the x-ray diffraction spectra of dicalcium phosphate dihydrate. A rather specific x-ray diffraction pattern of octacalcium phosphate pentahydrate revealed the only one strong peak at small angles. In all cases, significant deviations are observed for the recorded angular positions and relative intensity of the diffraction peaks. The results of the study of experimentally obtained mixtures of calcium phosphate are presented. It is shown that the graphic comparison of experimental x-ray diffraction spectra and pre-recorded spectra of the reference calcium phosphates and possible impurity phases is the most effective method. In this case, there is no need for calibration. When using this method, the total time for analysis of one sample is no more than 10 min.


2000 ◽  
Vol 3 (3) ◽  
pp. 259-271 ◽  
Author(s):  
S. Komura ◽  
D. Andelman

2021 ◽  
Vol 126 (18) ◽  
Author(s):  
Ahmad K. Omar ◽  
Katherine Klymko ◽  
Trevor GrandPre ◽  
Phillip L. Geissler

2004 ◽  
Vol 812 ◽  
Author(s):  
Nobutoshi Fujii ◽  
Kazuhiro Yamada ◽  
Yoshiaki Oku ◽  
Nobuhiro Hata ◽  
Yutaka Seino ◽  
...  

AbstractPeriodic 2-dimensional (2-D) hexagonal and the disordered pore structure silica films have been developed using nonionic surfactants as the templates. The pore structure was controlled by the static electrical interaction between the micelle of the surfactant and the silica oligomer. No X-ray diffraction peaks were observed for the disordered mesoporous silica films, while the pore diameters of 2.0-4.0 nm could be measured by small angle X-ray scattering spectroscopy. By comparing the properties of the 2-D hexagonal and the disordered porous silica films which have the same porosity, it is found that the disordered porous silica film has advantages in terms of the dielectric constant and Young's modulus as well as the hardness. The disordered porous silica film is more suitable for the interlayer dielectrics for ULSI.


1995 ◽  
Vol 398 ◽  
Author(s):  
Joshua W. Kriesel ◽  
Susanne M. Lee

ABSTRACTUsing rf sputtering and post-deposition annealing in a differential scanning calorimeter (DSC), we manufactured bulk (4000 nm) films of crystalline Ge0.83Sn0.17. This Sn concentration is much greater than the solid solubility limit of Sn in Ge (x ≤ 0.01). Continued annealing thermally induces Sn phase separation from the alloy, limiting the ultimate attainable grain size in the metastable crystals. We examine, here, the mechanisms and kinetics of the processes limiting the size of the Ge0.83Sn0.17 polycrystals. From a combination of DSC, electron microprobe, and x-ray diffraction (XRD) measurements, we propose phase transformation mechanisms corresponding to crystallization of amorphous Ge0.83Sn0.17, crystallization of an as-yet unidentified phase of Sn, and phase separation of Sn from the Ge1-xSnx crystals. We were unable to observe the unidentified phase of Sn in XRD, but the phase must be present in the material to account for the quantitative discrepancies (as much as 8 at.%) in Sn percentages determined from each of the DSC, XRD, and electron microprobe measurements. Our models for the various transformation kinetics were corroborated by the subsequent phase-separated Sn melting behavior observed in the DSC: two Sn melting endotherms, one of which was 20–100°C lower than the bulk melting temperature of Sn. This depressed temperature endotherm we speculate represents liquefaction of nanometer-sized (β–Sn clusters.


2012 ◽  
Vol 76 (3) ◽  
pp. 443-453 ◽  
Author(s):  
J. Plášil ◽  
K. Fejfarová ◽  
R. Skála ◽  
R. Škoda ◽  
N. Meisser ◽  
...  

AbstractTwo crystals of the uranyl carbonate mineral grimselite, ideally K3Na[(UO2)(CO3)3](H2O), from Jáchymov in the Czech Republic were studied by single-crystal X-ray diffraction and electron-probe microanalysis. One crystal has considerably more Na than the ideal chemical composition due to substitution of Na into KO8 polyhedra; the composition of the other crystal is nearer to ideal, and similar to synthetic grimselite. The presence of Na atoms in KO8 polyhedra, which are located in channels in the crystal structure, reduces their volume, and as a result the unit-cell volume also decreases. Structure refinement shows that the formula for the sample with the anomalously high Na content is (K2.43Na0.57)Σ3.00Na[(UO2)(CO3)3](H2O). The unit-cell parameters, refined in space group P2c, are a = 9.2507(1), c = 8.1788(1) Å, V = 606.14(3) Å3 and Z = 2. The crystal structure was refined to R1 = 0.0082 and wR1 = 0.0185 with a GOF = 1.33, based on 626 observed diffraction peaks [Iobs>3σ(I)].


1995 ◽  
Vol 51 (18) ◽  
pp. 12747-12753 ◽  
Author(s):  
M. A. G. Aranda ◽  
D. C. Sinclair ◽  
J. P. Attfield ◽  
A. P. Mackenzie

Sign in / Sign up

Export Citation Format

Share Document