scholarly journals Mixing and Matching Chromosomes during Female Meiosis

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 696
Author(s):  
Thomas Rubin ◽  
Nicolas Macaisne ◽  
Jean-René Huynh

Meiosis is a key event in the manufacturing of an oocyte. During this process, the oocyte creates a set of unique chromosomes by recombining paternal and maternal copies of homologous chromosomes, and by eliminating one set of chromosomes to become haploid. While meiosis is conserved among sexually reproducing eukaryotes, there is a bewildering diversity of strategies among species, and sometimes within sexes of the same species, to achieve proper segregation of chromosomes. Here, we review the very first steps of meiosis in females, when the maternal and paternal copies of each homologous chromosomes have to move, find each other and pair. We explore the similarities and differences observed in C. elegans, Drosophila, zebrafish and mouse females.

2020 ◽  
Vol 220 (2) ◽  
Author(s):  
Pedro Barbosa ◽  
Liudmila Zhaunova ◽  
Simona Debilio ◽  
Verdiana Steccanella ◽  
Van Kelly ◽  
...  

Meiosis creates genetic diversity by recombination and segregation of chromosomes. The synaptonemal complex assembles during meiotic prophase I and assists faithful exchanges between homologous chromosomes, but how its assembly/disassembly is regulated remains to be understood. Here, we report how two major posttranslational modifications, phosphorylation and ubiquitination, cooperate to promote synaptonemal complex assembly. We found that the ubiquitin ligase complex SCF is important for assembly and maintenance of the synaptonemal complex in Drosophila female meiosis. This function of SCF is mediated by two substrate-recognizing F-box proteins, Slmb/βTrcp and Fbxo42. SCF-Fbxo42 down-regulates the phosphatase subunit PP2A-B56, which is important for synaptonemal complex assembly and maintenance.


2020 ◽  
Vol 219 (12) ◽  
Author(s):  
Brennan M. Danlasky ◽  
Michelle T. Panzica ◽  
Karen P. McNally ◽  
Elizabeth Vargas ◽  
Cynthia Bailey ◽  
...  

Anaphase chromosome movement is thought to be mediated by pulling forces generated by end-on attachment of microtubules to the outer face of kinetochores. However, it has been suggested that during C. elegans female meiosis, anaphase is mediated by a kinetochore-independent pushing mechanism with microtubules only attached to the inner face of segregating chromosomes. We found that the kinetochore proteins KNL-1 and KNL-3 are required for preanaphase chromosome stretching, suggesting a role in pulling forces. In the absence of KNL-1,3, pairs of homologous chromosomes did not separate and did not move toward a spindle pole. Instead, each homolog pair moved together with the same spindle pole during anaphase B spindle elongation. Two masses of chromatin thus ended up at opposite spindle poles, giving the appearance of successful anaphase.


Genetics ◽  
2001 ◽  
Vol 159 (3) ◽  
pp. 1179-1189 ◽  
Author(s):  
Fernando Pardo-Manuel de Villena ◽  
Carmen Sapienza

AbstractSpeciation is often accompanied by changes in chromosomal number or form even though such changes significantly reduce the fertility of hybrid intermediates. We have addressed this evolutionary paradox by expanding the principle that nonrandom segregation of chromosomes takes place whenever human or mouse females are heterozygous carriers of Robertsonian translocations, a common form of chromosome rearrangement in mammals. Our analysis of 1170 mammalian karyotypes provides strong evidence that karyotypic evolution is driven by nonrandom segregation during female meiosis. The pertinent variable in this form of meiotic drive is the presence of differing numbers of centromeres on paired homologous chromosomes. This situation is encountered in all heterozygous carriers of Robertsonian translocations. Whenever paired chromosomes have different numbers of centromeres, the inherent asymmetry of female meiosis and the polarity of the meiotic spindle dictate that the partner with the greater number of centromeres will attach preferentially to the pole that is most efficient at capturing centromeres. This mechanism explains how chromosomal variants become fixed in populations, as well as why closely related species often appear to have evolved by directional adjustment of the karyotype toward or away from a particular chromosome form. If differences in the ability of particular DNA sequences or chromosomal regions to function as centromeres are also considered, nonrandom segregation is likely to affect karyotype evolution across a very broad phylogenetic range.


2019 ◽  
Author(s):  
Elizabeth Vargas ◽  
Karen P. McNally ◽  
Daniel B. Cortes ◽  
Michelle T. Panzica ◽  
Amy Shaub-Maddox ◽  
...  

AbstractMeiotic spindles are positioned perpendicular to the oocyte cortex to facilitate segregation of chromosomes into a large egg and a tiny polar body. In C. elegans, spindles are initially ellipsoid and parallel to the cortex before shortening to a spherical shape and rotating to the perpendicular orientation by dynein-driven cortical pulling. The mechanistic connection between spindle shape and rotation has remained elusive. Here we used mutants of the microtubule-severing protein katanin to manipulate spindle shape without eliminating cortical pulling. In a katanin mutant, spindles remained ellipsoid, had pointed poles and became trapped in either a diagonal or a parallel orientation. Results indicated that astral microtubules emanating from both spindle poles initially engage in cortical pulling until microtubules emanating from one pole detach from the cortex allowing pivoting of the spindle. The lower viscous drag experienced by spherical spindles prevented recapture of the cortex by astral microtubules emanating from the detached pole. In addition, maximizing contact between pole dynein and cortical dynein stabilizes round poles in a perpendicular orientation. Spherical spindle shape can thus promote perpendicular orientation by two distinct mechanisms.


2018 ◽  
Author(s):  
Stefanie Redemann ◽  
Ina Lantzsch ◽  
Norbert Lindow ◽  
Steffen Prohaska ◽  
Martin Srayko ◽  
...  

2020 ◽  
Author(s):  
Laura Bel Borja ◽  
Flavie Soubigou ◽  
Samuel J.P. Taylor ◽  
Conchita Fraguas Bringas ◽  
Jacqueline Budrewicz ◽  
...  

ABSTRACTProtein Phosphatase 2A (PP2A) is an heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits with various key roles during cell division. While A and C subunits form the core enzyme, the diversity generated by interchangeable B subunits dictates substrate specificity. Within the B subunits, B56-type subunits play important roles during meiosis in yeast and mice by protecting centromeric cohesion and stabilising the kinetochore-microtubule attachments. These functions are achieved through targeting of B56 subunits to centromere and kinetochore by Shugoshin and BUBR1. In the nematode Caenorhabditis elegans (C. elegans) the closest BUBR1 ortholog lacks the B56 interaction domain and the Shugoshin orthologue is not required for normal segregation during oocyte meiosis. Therefore, the role of PP2A in C. elegans female meiosis is not known. Here, we report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. Specifically, B56 subunits PPTR-1 and PPTR-2 associate with chromosomes during prometaphase I and regulate chromosome congression. The chromosome localization of B56 subunits does not require shugoshin orthologue SGO-1. Instead we have identified the kinase BUB-1 as the key B56 targeting factor to the chromosomes during meiosis. PP2A BUB-1 recruits PP2A:B56 to the chromosomes via dual mechanism: 1) PPTR-1/2 interacts with the newly identified LxxIxE short linear motif (SLiM) within a disordered region in BUB-1 in a phosphorylation-dependent manner; and 2) PPTR-2 can also be recruited to chromosomes in a BUB-1 kinase domain-dependent manner. Our results highlight a novel, BUB-1-dependent mechanism for B56 recruitment, essential for recruiting a pool of PP2A required for proper chromosome congression during meiosis I.


2020 ◽  
Author(s):  
Spencer G. Gordon ◽  
Lisa E. Kursel ◽  
Kewei Xu ◽  
Ofer Rog

AbstractDuring sexual reproduction the parental homologous chromosomes find each other (pair) and align along their lengths by integrating local sequence homology with large-scale contiguity, thereby allowing for precise exchange of genetic information. The Synaptonemal Complex (SC) is a conserved zipper-like structure that assembles between the homologous chromosomes. This phase-separated interface brings chromosomes together and regulates exchanges between them. However, the molecular mechanisms by which the SC carries out these functions remain poorly understood. Here we isolated and characterized two mutations in the dimerization interface in the middle of the SC zipper in C. elegans. The mutations perturb both chromosome alignment and the regulation of genetic exchanges. Underlying the chromosome-scale phenotypes are distinct alterations to the way SC subunits interact with one another. We propose that the SC brings homologous chromosomes together through two biophysical activities: obligate dimerization that prevents assembly on unpaired chromosomes; and a tendency to phase-separate that extends pairing interactions along the entire length of the chromosomes.


2000 ◽  
Vol 148 (2) ◽  
pp. 233-238 ◽  
Author(s):  
Enrique Martinez-Perez ◽  
Peter J. Shaw ◽  
Graham Moore

Many species exhibit polyploidy. The presence of more than one diploid set of similar chromosomes in polyploids can affect the assortment of homologous chromosomes, resulting in unbalanced gametes. Therefore, a mechanism is required to ensure the correct assortment and segregation of chromosomes for gamete formation. Ploidy has been shown to affect gene expression. We present in this study an example of a major effect on a phenotype induced by ploidy within the Triticeae. We demonstrate that centromeres associate early during anther development in polyploid species. In contrast, centromeres in diploid species only associate at the onset of meiotic prophase. We propose that this mechanism provides a potential route by which chromosomes can start to be sorted before meiosis in polyploids. This explains previous reports indicating that meiotic prophase is shorter in polyploids than in their diploid progenitors. Even artificial polyploids exhibit this phenotype, suggesting that the mechanism must be present in diploids, but only expressed in the presence of more than one diploid set of chromosomes.


2006 ◽  
Vol 17 (7) ◽  
pp. 3147-3155 ◽  
Author(s):  
Muneyoshi Otori ◽  
Takeshi Karashima ◽  
Masayuki Yamamoto

The Deleted in Azoospermia (DAZ) gene family encodes putative translational activators that are required for meiosis and other aspects of gametogenesis in animals. The single Caenorhabditis elegans homologue of DAZ, daz-1, is an essential factor for female meiosis. Here, we show that daz-1 is important for the switch from spermatogenesis to oogenesis (the sperm/oocyte switch), which is an essential step for the hermaphrodite germline to produce oocytes. RNA interference of the daz-1 orthologue in a related nematode, Caenorhabditis briggsae, resulted in a complete loss of the sperm/oocyte switch. The C. elegans hermaphrodite deficient in daz-1 also revealed a failure in the sperm/oocyte switch if the genetic background was conditional masculinization of germline. DAZ-1 could bind specifically to mRNAs encoding the FBF proteins, which are translational regulators for the sperm/oocyte switch and germ stem cell proliferation. Expression of the FBF proteins seemed to be lowered in the daz-1 mutant at the stage for the sperm/oocyte switch. Conversely, a mutation in gld-3, a gene that functionally counteracts FBF, could partially restore oogenesis in the daz-1 mutant. Together, we propose that daz-1 plays a role upstream of the pathway for germ cell sex determination.


2021 ◽  
Author(s):  
Liangyu Zhang ◽  
Weston Stauffer ◽  
David Zwicker ◽  
Abby F. Dernburg

AbstractMeiotic recombination is highly regulated to ensure precise segregation of homologous chromosomes. Evidence from diverse organisms indicates that the synaptonemal complex (SC), which assembles between paired chromosomes, plays essential roles in crossover formation and patterning. Several additional “pro-crossover” proteins are also required for recombination intermediates to become crossovers. These typically form multiple foci or recombination nodules along SCs, and later accumulate at fewer, widely spaced sites. Here we report that in C. elegans CDK-2 is required to stabilize all crossover intermediates and stabilizes interactions among pro-crossover factors by phosphorylating MSH-5. Additionally, we show that the conserved RING domain proteins ZHP-3/4 diffuse along the SC and remain dynamic following their accumulation at recombination sites. Based on these and previous findings we propose a model in which recombination nodules arise through spatially restricted biomolecular condensation and then undergo a regulated coarsening process, resulting in crossover interference.


Sign in / Sign up

Export Citation Format

Share Document