scholarly journals Role of Mitochondria in Cancer Stem Cell Resistance

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1693 ◽  
Author(s):  
José Manuel García-Heredia ◽  
Amancio Carnero

Cancer stem cells (CSC) are associated with the mechanisms of chemoresistance to different cytotoxic drugs or radiotherapy, as well as with tumor relapse and a poor prognosis. Various studies have shown that mitochondria play a central role in these processes because of the ability of this organelle to modify cell metabolism, allowing survival and avoiding apoptosis clearance of cancer cells. Thus, the whole mitochondrial cycle, from its biogenesis to its death, either by mitophagy or by apoptosis, can be targeted by different drugs to reduce mitochondrial fitness, allowing for a restored or increased sensitivity to chemotherapeutic drugs. Once mitochondrial misbalance is induced by a specific drug in any of the processes of mitochondrial metabolism, two elements are commonly boosted: an increment in reactive nitrogen/oxygen species and, subsequently, activation of the intrinsic apoptotic pathway.

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Saverio Marchi ◽  
Carlotta Giorgi ◽  
Jan M. Suski ◽  
Chiara Agnoletto ◽  
Angela Bononi ◽  
...  

Reactive oxygen species (ROS) are highly reactive molecules, mainly generated inside mitochondria that can oxidize DNA, proteins, and lipids. At physiological levels, ROS function as “redox messengers” in intracellular signalling and regulation, whereas excess ROS induce cell death by promoting the intrinsic apoptotic pathway. Recent work has pointed to a further role of ROS in activation of autophagy and their importance in the regulation of aging. This review will focus on mitochondria as producers and targets of ROS and will summarize different proteins that modulate the redox state of the cell. Moreover, the involvement of ROS and mitochondria in different molecular pathways controlling lifespan will be reported, pointing out the role of ROS as a “balance of power,” directing the cell towards life or death.


Bone ◽  
2011 ◽  
Vol 48 (6) ◽  
pp. S288
Author(s):  
L. Pronsato ◽  
R. Boland ◽  
L. Milanesi

2011 ◽  
Vol 21 (2) ◽  
pp. 69-80 ◽  
Author(s):  
Raquel Iglesias-Fernández ◽  
María del Carmen Rodríguez-Gacio ◽  
Angel J. Matilla

AbstractThe transition from the dormant to the non-dormant state of a viable and mature seed can take place at low hydration by exposure to air-dry storage conditions (dry afterripening; AR). The events occurring during this loss of dormancy are of considerable physiological, ecological and agricultural interest. AR may be attributable to increased sensitivity to germination-stimulating factors and a widening of the temperature window for germination. Genetic, –omics and physiological studies on this mode of dormancy breaking provide support for a key role of the balance between gibberellin (GA) and abscisic acid (ABA) metabolism and sensitivity. Recent evidence also supports a possible role for ethylene (ET) in this complex signalling network that is necessary for AR implementation. However, hormone-independent signals, such as reactive oxygen species (ROS), nitrate (NO _{3}^{ - } ) or nicotinamide adenine dinucleotide (NAD+), also appear to be involved. The way in which hormone- and non-hormone-signalling pathways affects each other (cross-talk) is still under study. This review provides updated information on the programmes that overcome seed dormancy. Thus, we have reviewed: (1) the –omic status in dry seeds; (2) the relationship between temperature and nitrate signalling and AR; (3) alterations in ABA/GA synthesis and signalling; (4) the action of hormone molecules other than ABA and GA (i.e. ET, salicylic and jasmonic acids); and (5) participation of reactive oxygen species (ROS), NAD+ and protein carbonylation. Taken together, the acquisition and implementation of dry AR involve a complex signalling network that is difficult to disentangle.


2020 ◽  
Vol 28 ◽  
Author(s):  
Rama Rao Malla ◽  
Gugalavath Shailender ◽  
Mohammad Amjad Kamal

: Tumour microenvironment (TME) is a resident of a variety of cells, which devoted to the heterogeneous population of the tumour. TME establishes a communication network for crosstalk and signalling between tumour cells, stroma, and other interstitial cells. The cross-communication drives the reprogramming of TME cells, which promote cancer progression and metastasis via diverse signalling pathways. Recently, TME-derived exosomes are recognized as critical communicators of TME cell reprogramming. This review addresses the role of TME-derived exosomes in the modulation of stroma, including reprogramming the stromal cells, ECM and tumour cell metabolism, as well as neoplastic transformation. Subsequently, we described the role of exosomes in pre-metastatic niche development, maintenance of stemness and tumour vasculature as well as development of drug resistance. We also explored tumour-derived exosomes in precision, including diagnosis, drug delivery, and vaccine development. We discussed the currently established bioengineered exosomes as carriers for chemotherapeutic drugs, RNAi molecules, and natural compounds. Finally, we presented tetraspanin and DNAbased precision methods for the quantification of tumour-derived exosomes. Overall, TME-derived exosome-mediated reprogramming of TME and precision strategies could illuminate the potential mechanisms for targeted therapeutic intervention.


2016 ◽  
Vol 150 (4) ◽  
pp. S819 ◽  
Author(s):  
Nour Eissa ◽  
Mohammad F. Rabbi ◽  
Peris M. Munyaka ◽  
Azin Khafipour ◽  
Charles N. Bernstein ◽  
...  

2011 ◽  
Vol 210 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Diana Choi ◽  
Stephanie A Schroer ◽  
Shun Yan Lu ◽  
Erica P Cai ◽  
Zhenyue Hao ◽  
...  

Cytochrome c is one of the central mediators of the mitochondrial or the intrinsic apoptotic pathway. Mice harboring a ‘knock-in’ mutation of cytochrome c, impairing only its apoptotic function, have permitted studies on the essential role of cytochrome c-mediated apoptosis in various tissue homeostasis. To this end, we examined the role of cytochrome c in pancreatic β-cells under homeostatic conditions and in diabetes models, including those induced by streptozotocin (STZ) and c-Myc. Previous studies have shown that both STZ- and c-Myc-induced β-cell apoptosis is mediated through caspase-3 activation; however, the precise mechanism in these modes of cell death was not characterized. The results of our study show that lack of functional cytochrome c does not affect glucose homeostasis or pancreatic β-cell mass under basal conditions. Moreover, the cytochrome c-mediated intrinsic apoptotic pathway is required for neither STZ- nor c-Myc-induced β-cell death. We also observed that the extrinsic apoptotic pathway mediated through caspase-8 was not essential in c-Myc-induced β-cell destruction. These findings suggest that cytochrome c is not required for STZ-induced β-cell apoptosis and, together with the caspase-8-mediated extrinsic pathway, plays a redundant role in c-Myc-induced β-cell apoptosis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Haolan Wang ◽  
Ming Guo ◽  
Hudie Wei ◽  
Yongheng Chen

AbstractMyeloid leukemia 1 (MCL-1) is an antiapoptotic protein of the BCL-2 family that prevents apoptosis by binding to the pro-apoptotic BCL-2 proteins. Overexpression of MCL-1 is frequently observed in many tumor types and is closely associated with tumorigenesis, poor prognosis and drug resistance. The central role of MCL-1 in regulating the mitochondrial apoptotic pathway makes it an attractive target for cancer therapy. Significant progress has been made with regard to MCL-1 inhibitors, some of which have entered clinical trials. Here, we discuss the mechanism by which MCL-1 regulates cancer cell apoptosis and review the progress related to MCL-1 small molecule inhibitors and their role in cancer therapy.


ChemMedChem ◽  
2017 ◽  
Vol 12 (24) ◽  
pp. 2054-2065 ◽  
Author(s):  
Domenico Iacopetta ◽  
Annaluisa Mariconda ◽  
Carmela Saturnino ◽  
Anna Caruso ◽  
Giuseppe Palma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document