scholarly journals Rho GTPases: Big Players in Breast Cancer Initiation, Metastasis and Therapeutic Responses

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2167
Author(s):  
Brock Humphries ◽  
Zhishan Wang ◽  
Chengfeng Yang

Rho GTPases, a family of the Ras GTPase superfamily, are key regulators of the actin cytoskeleton. They were originally thought to primarily affect cell migration and invasion; however, recent advances in our understanding of the biology and function of Rho GTPases have demonstrated their diverse roles within the cell, including membrane trafficking, gene transcription, migration, invasion, adhesion, survival and growth. As these processes are critically involved in cancer initiation, metastasis and therapeutic responses, it is not surprising that studies have demonstrated important roles of Rho GTPases in cancer. Although the majority of data indicates an oncogenic role of Rho GTPases, tumor suppressor functions of Rho GTPases have also been revealed, suggesting a context and cell-type specific function for Rho GTPases in cancer. This review aims to summarize recent progresses in our understanding of the regulation and functions of Rho GTPases, specifically in the context of breast cancer. The potential of Rho GTPases as therapeutic targets and prognostic tools for breast cancer patients are also discussed.

2022 ◽  
Vol 41 (1) ◽  
pp. 137-143
Author(s):  
Soudeh Ghafouri-Fard ◽  
Behnoush Sohrabi ◽  
Bashdar Mahmud Hussen ◽  
Elham Mehravaran ◽  
Elena Jamali ◽  
...  

TP53 encodes a major tumor suppressor protein which blocks carcinogenesis process in a variety of tissues including breast tissue. Expression and function of this gene is regulated by a number of long non-coding RNAs (lncRNAs) among them are PANDA, MEG3 and CASC2. We measured expression of TP53 and these transcripts in a cohort of Iranian breast cancer patients. Expression levels of TP53, MEG3, CASC2 and PANDA were significantly lower in tumoral samples compared with non-tumoral samples (Posterior mean differences =  −4.26, −1.66, −5.98 and −3.13, respectively; P values < 0.0001). Expression of CASC2 was higher in Her2 1+ cases compared with Her2 negative cases (Beta = 1.85, P value = 0.037). Expression levels of MEG3 and TP53 were lower in grade 2 samples compared with grade 1 (Beta = −1.86, P value = 0.006 and Beta = −2.24, P value = 0.003, respectively). There was no other significant association between expression of genes and clinical variables. CASC2 had the best performance among these genes with area under curve value of 0.78 and sensitivity and specificity values of 56.33% and 88.73%, respectively (P value < 0.0001). The current investigation supports the role of TP53-related lncRNAs in the pathogenesis of breast cancer.


2016 ◽  
Vol 38 (1) ◽  
pp. 94-109 ◽  
Author(s):  
Melpomeni Tseliou ◽  
Ahmed Al-Qahtani ◽  
Saud Alarifi ◽  
Saad H. Alkahtani ◽  
Christos Stournaras ◽  
...  

Background/Aims: Rho GTPases are crucial regulators of the actin cytoskeleton, membrane trafficking and cell signaling and their importance in cell migration and invasion is well- established. The human cytomegalovirus (HCMV) is a widespread pathogen responsible for generally asymptomatic and persistent infections in healthy people. Recent evidence indicates that HCMV gene products are expressed in over 90% of malignant type glioblastomas (GBM). In addition, the HCMV Immediate Early-1 protein (IE1) is expressed in >90% of tumors analyzed. Methods: RhoA, RhoB and RhoC were individually depleted in U373MG glioblastoma cells as well as U373MG cells stably expressing the HCMV IE1 protein (named U373MG-IE1 cells) shRNA lentivirus vectors. Cell proliferation assays, migration as well as wound-healing assays were performed in uninfected and HCMV-infected cells. Results: The depletion of RhoA, RhoB and RhoC protein resulted in significant alterations in the morphology of the uninfected cells, which were further enhanced by the cytopathic effect caused by HCMV. Furthermore, in the absence or presence of HCMV, the knockdown of RhoB and RhoC proteins decreased the proliferation rate of the parental and the IE1-expressing glioblastoma cells, whereas the knockdown of RhoA protein in the HCMV infected cell lines restored their proliferation rate. In addition, wound healing assays in U373MG cells revealed that depletion of RhoA, RhoB and RhoC differentially reduced their migration rate, even in the presence or the absence of HCMV. Conclusion: Collectively, these data show for the first time a differential implication of Rho GTPases in morphology, proliferation rate and motility of human glioblastoma cells during HCMV infection, further supporting an oncomodulatory role of HCMV depending on the Rho isoforms' state.


2020 ◽  
Vol 21 (23) ◽  
pp. 9227
Author(s):  
Nam Ji Sung ◽  
Na Hui Kim ◽  
Young-Joon Surh ◽  
Sin-Aye Park

Gremlin-1 (GREM1), one of the bone morphogenetic protein (BMP) antagonists, can directly bind to BMPs. GREM1 is involved in organogenesis, tissue differentiation, and organ fibrosis. Recently, numerous studies have reported the oncogenic role of GREM1 in cancer. However, the role of GREM1 in metastasis of breast cancer cells and its underlying mechanisms remain poorly understood. The role of GREM1 in breast cancer progression was assessed by measuring growth, migration, and invasion of breast cancer cells. An orthotopic breast cancer mouse model was used to investigate the role of GREM1 in lung metastasis of breast cancer cells. GREM1 knockdown suppressed the proliferation of breast cancer cells, while its overexpression increased their growth, migration, and invasion. Cells with Grem1-knockdown showed much lower tumor growth rates and lung metastasis than control cells. GREM1 enhanced the expression of matrix metalloproteinase 13 (MMP13). A positive correlation between GREM1 and MMP13 expression was observed in breast cancer patients. GREM1 activated signal transducer and activator of transcription 3 (STAT3) transcription factor involved in the expression of MMP13. Our study suggests that GREM1 can promote lung metastasis of breast cancer cells through the STAT3-MMP13 pathway. In addition, GREM1 might be a promising therapeutic target for breast cancer metastasis.


2018 ◽  
Vol 45 (2) ◽  
pp. 692-705 ◽  
Author(s):  
Jinfeng Zhang ◽  
Jian Zhang ◽  
Shouping Xu ◽  
Xianyu Zhang ◽  
Peiyuan Wang ◽  
...  

Background/Aims: Tropomyosin-2 (TPM2) plays important roles in functions of the cytoskeleton, such as cytokinesis, vesicle transport, cell proliferation, migration and apoptosis,and these functions imply that TPM2 also plays a role in cancer development. Indeed, it has been shown that TPM2 plays a critical role in some cancers. However, the role of TPM2 in breast cancer is still poorly characterized. Thus, we explored the role of TPM2 in breast cancer. Methods: We analysed TPM2 expression and its correlation with the clinicopathological features in breast cancer. Then, we examined the influence of hypoxia on TPM2 expression and methylation status using bisulfite sequencing PCR. Furthermore, we performed TPM2-mediated migration and invasion assays in the context of hypoxia and examined changes in matrix metalloproteinase-2 (MMP2) expression. Finally, we detected the influence of TPM2 on survival and chemotherapy drug sensitivity. Results: We found that TPM2 expression is down-regulated in breast cancer cells compared to that in normal breast cells. The data from TCGA supported these results. Promoter methylation of TPM2, which could be induced by hypoxia, was responsible for its low expression. Hypoxia might regulate cell invasiveness partly by TPM2 down-regulation-mediated changes of MMP2 expression. Importantly, low TPM2 expression was correlated with lymph node metastasis (P=0.031), tumour node metastasis stage (P=0.01), histological grade (P=0.037), and shorter overall survival (P=0.028). Univariate and multivariate analyses indicated that TPM2 was an independent predictor in breast cancer patients. Paclitaxel chemotherapy did not benefit patients with low TPM2 expression (P<0.0001). TPM2 knockdown significantly reduced cell sensitivity to paclitaxel. Conclusion: TPM2 is a potential novel tumour suppressor gene in breast cancer. TPM2 is associated with poor survival and chemoresistance to paclitaxel in breast cancer, and TPM2 may represent a promising therapeutic gene target for breast cancer patients with chemoresistance.


Sign in / Sign up

Export Citation Format

Share Document