scholarly journals ZnO Microflowers Grown by Chemical Bath Deposition: A Low-Cost Approach for Massive Production of Functional Nanostructures

Chemosensors ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 62
Author(s):  
Vincenzina Strano ◽  
Maria Grazia Greco ◽  
Enrico Ciliberto ◽  
Salvo Mirabella

The massive production of nanostructures with controlled features and high surface area is a challenging and timely task in view of developing effective materials for sensing and catalysis. Herein, functional ZnO nanostructures, named microflowers (MFs) have been prepared by a facile and rapid chemical bath deposition. ZnO MFs show an intriguing sheets-composed spheroidal shape, with diameters in the range 0.2–2.5 µm, whose formation is achieved by a complexing action by F in an aqueous solution of zinc nitrate hexahydrate and hexamethylenetetramine. The evolution of the physical and structural properties of the material, following post-deposition thermal annealing, has been investigated by scanning electron microscopy (SEM), energy dispersive X-ray analyses (EDX), photoluminescence (PL) and X-ray diffraction (XRD) techniques. The effectiveness of ZnO MFs in UV detection has also been tested to account for the potentiality of these nanostructures.

2012 ◽  
Vol 620 ◽  
pp. 60-65
Author(s):  
Azlinda Ab Aziz ◽  
Zuraida Khusaimi ◽  
Mohamad Rusop

Zinc oxide (ZnO) nanostructures were successfully grown on gold-seeded Si substrate prepared by a solution-immersion method using a novel mixture of an aqueous solution of Zinc nitrate hexahydrate (Zn (NO3)2.6H2O) with a non-toxic, odourless urea (CH4N2O) as a stabilizer. Structural and optical properties of resultant ZnO thin films were investigated by X-Ray Diffraction, FESEM and Photoluminescence Spectroscopy (PL). Clusters of ZnO micro-flower with serrated broad petals with the thickness of petals approximately 60 nm were interestingly formed on the film with horizontal manner of alignment during immersion process. The smallest grain size (29 nm) along (100) orientation was achieve with the alignment of substrate tilt towards 60°. The petals structure has high surface area, is a potential metal oxide nanostructures to be develop for optoelectronic devices and chemical sensors.


2017 ◽  
Vol 75 (10) ◽  
pp. 2403-2411 ◽  
Author(s):  
Zongxue Yu ◽  
Qi Chen ◽  
Liang Lv ◽  
Yang Pan ◽  
Guangyong Zeng ◽  
...  

The environmental applications of graphene oxide and β-cyclodextrin (β-CD) have attracted great attention since their first discovery. Novel nanocomposites were successfully prepared by using an esterification reaction between β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane grafted graphene oxide (β-CD/GPTMS/GO). The β-CD/GPTMS/GO nanocomposites were used to remove the Cu2+ from aqueous solutions. The characteristics of β-CD/GPTMS/GO were detected by scanning electron microscopy (SEM), Fourier transform infrared, X-ray diffraction (XRD), thermogravimetric analysis (TG) and energy dispersive X-ray (EDX). The dispersibility of graphene oxide was excellent due to the addition of β-CD. The adsorption isotherms data obtained at the optimum pH 7 were fitted by Langmuir isotherm model. The excellent adsorption properties of β-CD/GPTMS/GO for Cu2+ ions could be attributed to the apolar cavity structure of β-CD, the high surface area and abundant functional groups on the surface of GO. The adsorption patterns of β-CD/GPTMS/GO were electrostatic attraction, formation of host-guest inclusion complexes and the ion exchange adsorption. The efficient adsorption of β-CD/GPTMS/GO for Cu2+ ions suggested that these novel nanocomposites may be ideal candidates for removing other cation pollutants from waste water.


2011 ◽  
Vol 312-315 ◽  
pp. 1044-1048
Author(s):  
Salina Muhamad ◽  
Abu Bakar Suriani ◽  
Mohamad Zainizan Sahdan ◽  
Anuar Ahmad ◽  
Yosri M. Siran ◽  
...  

In this paper, the study of supergrowth VACNTs after being immersed in zinc oxide solution were presented. Vertically aligned carbon nanotubes (VACNTs) were first deposited on silicon with the orientation of [1 0 0] before being immersed in an aqueous solution of zinc nitrate hexahydrate and hexamethylenetetramine. Physical changes have been observed by scanning electron microscopy, SEM in the VACNTs, where the significant expansion of length of up to almost 0.8 mm was achieved after the immersion of 4.5 hr. The supergrowth of VACNTs was observed and analyzed by energy dispersive x-ray spectroscopy, EDX to substantiate the incorporation of CNTs and ZnO of the sample. Raman spectroscopy and x-ray diffraction, XRD were used to inspect the crystal orientation to support our findings.


MRS Advances ◽  
2020 ◽  
Vol 5 (45) ◽  
pp. 2349-2358 ◽  
Author(s):  
S. K. Noukelag ◽  
H.E.A. Mohamed ◽  
B. Moussa ◽  
L.C. Razanamahandry ◽  
S.K.O. Ntwampe ◽  
...  

AbstractBiosynthesized Zincite nanoparticles have been successfully demonstrated by a completely green process mediated aqueous extract of rosemary leaves acting as both reducing and stabilizing agents and zinc nitrate hexahydrate as the precursor. The synthesis was free of solvents and surfactants to adhere to green chemistry principles and the impartation of environmental benignity. To achieve our objective, structural and optical investigations of ZnO annealed at 500°C for 2hrs were carried-out using complementary techniques. High resolution transmission electron microscopy (HRTEM) revealed the self-assembled, highly agglomerated quasi-hexagonal shaped NPs and the average particle size was found to peak at 15.62 ± 0.22 nm. Selected area electron diffraction (SAED) and X-ray diffraction (XRD) exhibited several diffraction rings with clear diffraction spots confirming their polycrystallinity and the purity of ZnO NPs with a wurtzite structure. Furthermore, the energy dispersive X-ray spectroscopy (EDS) substantiated the presence of Zn and O in the sample and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) illustrated the Zn-O chemical bonds. From UV-Vis-NIR, the optical band gap was amounted to 3.2 eV and photoluminescence (PL) emission spectrum to 2.9eV with high surface defects and oxygen vacancies. Through these results, the use of rosemary leaves extract is hereby shown to be a cost-effective and environmentally friendly alternative to synthesize Zincite nanoparticles (ZnO NPs).


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 354 ◽  
Author(s):  
Cassia Boyadjian ◽  
Leon Lefferts

In this work, molybdena-promoted Li/MgO is studied as a catalyst for the oxidative conversion of n-hexane. The structure of the catalysts is investigated with X-ray Diffraction (XRD) and Raman spectroscopy. The MoO3/Li/MgO catalyst contains three types of molybdena-containing species, the presence of which depend on molybdena loading. At low Mo/Li ratios (i) isolated dispersed [MoO4]2− anionic species are observed. At high Mo/Li ratios, the formation of crystalline lithium molybdate phases such as (ii) monomeric Li2MoO4 and tentatively (iii) polymeric Li2Mo4O13 are concluded. The presence of these lithium molybdates diminishes the formation of Li2CO3 in the catalyst. Subsequently, the catalyst maintains high surface area and stability with time-on-stream during oxidative conversion. Molybdena loading as low as 0.5 wt % is sufficient to induce these improvements, maintaining the non-redox characteristics of the catalyst, whereas higher loadings enhance deep oxidation and oxidative dehydrogenation reactions. Promoting a Li/MgO catalyst with 0.5 wt % MoO3 is thus efficient for selective conversion of n-hexane to alkenes, giving alkene yield up to 24% as well as good stability.


2011 ◽  
Vol 364 ◽  
pp. 45-49 ◽  
Author(s):  
Azlinda Ab Azlinda ◽  
Zuraida Khusaimi ◽  
Saifollah Abdullah ◽  
Mohamad Rusop

Zinc oxide (ZnO) nanostructures prepared by immersion method were successfully grown on gold-seeded silicon substrate using Zinc nitrate hexahydrate (Zn (NO3)2.6H2O) as a precursor, separately stabilized with non-toxic urea (CH4N2O) and hexamethylene tetraamine (HMTA). The effect of changing the stabilizer of ZnO solution on the crystal structure, morphology and photoluminescence properties of the resultant ZnO is investigated. X-ray diffraction of the synthesized ZnO shows hexagonal zincite structure. The morphology of the ZnO was characterized using Field Emission Scanning Electron Microscope (FESEM). The growth of ZnO using urea as stabilizer shows clusters of ZnO nanoflower with serrated broad petals were interestingly formed. ZnO in HMTA showed growth of nanorods. The structures has high surface area, is a potential metal oxide nanostructures to be develop for optoelectronic devices and chemical sensors. The formation of ZnO nanostructures is found to be significantly affected by the stabilizer.


2011 ◽  
Vol 312-315 ◽  
pp. 99-103 ◽  
Author(s):  
Zuraida Khusaimi ◽  
Mohamad Hafiz Mamat ◽  
Mohd Zainizan Sahdan ◽  
Norbani Abdullah ◽  
Mohamad Rusop

A wet chemical approach, originating from sol-gel preparation, was adopted with the intention to develop a low-temperature benign method of preparation. ZnO nanorods are successfully grown in an aqueous medium. The precursor, zinc nitrate hexahydrate (Zn(NO3)2.6H2O), is stabilized by hexamethylene tetraamine (HMTA). The effect of changing the molarity of HMTA to the structural orientation of ZnO nanorods is investigated. X-ray diffraction of the synthesized ZnO shows hexagonal zincite structure. The structural features of the nanocrystalline ZnO were studied by SEM. Structural features, surface morphology and differences in lattice orientation are seemingly influenced by varying the Zn2+: HMTA molar ratio. The formation of ZnO nanorods with blunt and sharp tips is found to be significantly affected by this ratio.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jianliang Cao ◽  
Gaojie Li ◽  
Yan Wang ◽  
Guang Sun ◽  
Hari Bala ◽  
...  

Hierarchical porousα-FeOOH nanoparticles were controlled and prepared via a facile polystyrene (PS) microspheres-templated method. Theα-Fe2O3was obtained by the calcination of the as-preparedα-FeOOH. The resulting nanoparticles were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2-sorption techniques. The adsorption and photodegradation of Rhodamine B performance were evaluated under UV light at room temperature. The results indicated that the photocatalytic activity of theα-FeOOH nanoparticles is superior toα-Fe2O3-200 andα-Fe2O3-300 due to the hierarchically multiporous structure and high surface area. This convenient and low-cost process provides a rational synthesis alternative for the preparation of multiporous materials and the as-synthesis products have great foreground applications in many aspects.


2004 ◽  
Vol 40 (1) ◽  
pp. 1-9 ◽  
Author(s):  
E. Deliyanni ◽  
D. Bakoyannakis ◽  
A. Zouboulis ◽  
K. Matis

The application of an innovative, simple and low cost method was tested for the preparation of nanocrystalline iron hydroxides and oxyhydroxides; different iron precursors have been earlier used and combined to different volatile precipitating agents. The examined in the present product, akagan?ite [?-FeO(OH)], had high surface area and definite pore size distribution. The produced materials were examined in detail (i.e. by powder X-ray diffraction, TEM and nitrogen sorption measurement). Main aim of this study was to evaluate the efficiency of the prepared material in the removal of heavy and toxic metal cations, like Cd(II), from aqueous solutions; cadmium constitutes a priority pollutant. Sorption was found to depended on the solution pH and its ionic strength. Typical isotherm models were applied and calculated the values of maximum adsorbent capacity for the metal as well as that of the enthalpy change during the removal process.


Sign in / Sign up

Export Citation Format

Share Document