scholarly journals Development and study of iron-based nanoadsorbents

2004 ◽  
Vol 40 (1) ◽  
pp. 1-9 ◽  
Author(s):  
E. Deliyanni ◽  
D. Bakoyannakis ◽  
A. Zouboulis ◽  
K. Matis

The application of an innovative, simple and low cost method was tested for the preparation of nanocrystalline iron hydroxides and oxyhydroxides; different iron precursors have been earlier used and combined to different volatile precipitating agents. The examined in the present product, akagan?ite [?-FeO(OH)], had high surface area and definite pore size distribution. The produced materials were examined in detail (i.e. by powder X-ray diffraction, TEM and nitrogen sorption measurement). Main aim of this study was to evaluate the efficiency of the prepared material in the removal of heavy and toxic metal cations, like Cd(II), from aqueous solutions; cadmium constitutes a priority pollutant. Sorption was found to depended on the solution pH and its ionic strength. Typical isotherm models were applied and calculated the values of maximum adsorbent capacity for the metal as well as that of the enthalpy change during the removal process.

2019 ◽  
Vol 9 (21) ◽  
pp. 4486 ◽  
Author(s):  
Candelaria Tejada-Tovar ◽  
Angel Darío Gonzalez-Delgado ◽  
Angel Villabona-Ortiz

The removal of water pollutants has been widely addressed for the conservation of the environment, and novel materials are being developed as adsorbent to address this issue. In this work, different residual biomasses were employed to prepare biosorbents applied to lead (Pb(II)) ion uptake. The choice of cassava peels (CP), banana peels (BP), yam peels (YP), and oil palm bagasse (OPB) was made due to the availability of such biomasses in the Department of Bolivar (Colombia), derived from agro-industrial activities. The materials were characterized by ultimate and proximate analysis, Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller analysis (BET), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS) in order to determine the physicochemical properties of bioadsorbents. The adsorption tests were carried out in batch mode, keeping the initial metal concentration at 100 ppm, temperature at 30 °C, particle size at 1 mm, and solution pH at 6. The experimental results were adjusted to kinetic and isotherm models to determine the adsorption mechanism. The remaining concentration of Pb(II) in solution was measured by atomic absorption at 217 nm. The functional groups identified in FTIR spectra are characteristic of lignocellulosic materials. A high surface area was found for all biomaterials with the exception of yam peels. A low pore volume and size, related to the mesoporous structure of these materials, make these bioadsorbents a suitable alternative for liquid phase adsorption, since they facilitate the diffusion of Pb(II) ions onto the adsorbent structure. Both FTIR and EDS techniques confirmed ion precipitation onto adsorbent materials after the adsorption process. The adsorption tests reported efficiency values above 80% for YP, BP, and CP, indicating a good uptake of Pb(II) ions from aqueous solution. The results reported that Freundlich isotherm and pseudo-second order best fit experimental data, suggesting that the adsorption process is governed by chemical reactions and multilayer uptake. The future prospective of this work lies in the identification of alternatives to reuse Pb(II)-contaminated biomasses after heavy metal adsorption, such as material immobilization.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jianliang Cao ◽  
Gaojie Li ◽  
Yan Wang ◽  
Guang Sun ◽  
Hari Bala ◽  
...  

Hierarchical porousα-FeOOH nanoparticles were controlled and prepared via a facile polystyrene (PS) microspheres-templated method. Theα-Fe2O3was obtained by the calcination of the as-preparedα-FeOOH. The resulting nanoparticles were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2-sorption techniques. The adsorption and photodegradation of Rhodamine B performance were evaluated under UV light at room temperature. The results indicated that the photocatalytic activity of theα-FeOOH nanoparticles is superior toα-Fe2O3-200 andα-Fe2O3-300 due to the hierarchically multiporous structure and high surface area. This convenient and low-cost process provides a rational synthesis alternative for the preparation of multiporous materials and the as-synthesis products have great foreground applications in many aspects.


Author(s):  
Ravindra Kumar Gautam ◽  
Shivani Soni ◽  
Mahesh Chandra Chattopadhyaya

Water pollution by anthropogenic activities is proving to be of critical concern as the heavy metals affect aquatic organisms and can quickly disperse to large distances. This poses a risk to both human health and the aquatic biota. Hence, there is a need to treat the wastewater containing toxic metals before they are discharged into the water bodies. During recent years, magnetic nanoparticles came to the foreground of scientific interest as a potential adsorbent of novel wastewater treatment processes. Magnetic nanoparticles have received much attention due to their unique properties, such as extremely small size, high surface-area-to-volume ratio, surface modifiability, multi functionality, excellent magnetic properties, low-cost synthesis, and great biocompatibility. The multi-functional magnetic nanoparticles have been successfully applied for the reduction of toxic metal ions up to ppb level in waste-treated water. This chapter highlights the potential application of magnetic nanoparticles for the removal of heavy metals.


Author(s):  
Ravindra Kumar Gautam ◽  
Shivani Soni ◽  
Mahesh Chandra Chattopadhyaya

Water pollution by anthropogenic activities is proving to be of critical concern as the heavy metals affect aquatic organisms and can quickly disperse to large distances. This poses a risk to both human health and the aquatic biota. Hence, there is a need to treat the wastewater containing toxic metals before they are discharged into the water bodies. During recent years, magnetic nanoparticles came to the foreground of scientific interest as a potential adsorbent of novel wastewater treatment processes. Magnetic nanoparticles have received much attention due to their unique properties, such as extremely small size, high surface-area-to-volume ratio, surface modifiability, multi functionality, excellent magnetic properties, low-cost synthesis, and great biocompatibility. The multi-functional magnetic nanoparticles have been successfully applied for the reduction of toxic metal ions up to ppb level in waste-treated water. This chapter highlights the potential application of magnetic nanoparticles for the removal of heavy metals.


Chemosensors ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 62
Author(s):  
Vincenzina Strano ◽  
Maria Grazia Greco ◽  
Enrico Ciliberto ◽  
Salvo Mirabella

The massive production of nanostructures with controlled features and high surface area is a challenging and timely task in view of developing effective materials for sensing and catalysis. Herein, functional ZnO nanostructures, named microflowers (MFs) have been prepared by a facile and rapid chemical bath deposition. ZnO MFs show an intriguing sheets-composed spheroidal shape, with diameters in the range 0.2–2.5 µm, whose formation is achieved by a complexing action by F in an aqueous solution of zinc nitrate hexahydrate and hexamethylenetetramine. The evolution of the physical and structural properties of the material, following post-deposition thermal annealing, has been investigated by scanning electron microscopy (SEM), energy dispersive X-ray analyses (EDX), photoluminescence (PL) and X-ray diffraction (XRD) techniques. The effectiveness of ZnO MFs in UV detection has also been tested to account for the potentiality of these nanostructures.


2021 ◽  
Author(s):  
Nagy Torad ◽  
Ahmed Abu El-Nasr ◽  
Nehal Salahuddin ◽  
mohamad ayad

Abstract Mesoporous silica KIT-6 was chemically modified using 3-mercaptopropyltriethoxysilane (3-MPTS) via post-grafting method to prepare functionalized mesoporous KIT-6-SO3H with highly acidic ‒SO3H groups. Thin layers of KIT-6-SO3H coating onto quartz crystal microbalance (QCM) electrodes are employed as a meso-KIT-6-QCM sensor for the adsorptive removal of Pd(II), Cd(II) and Cs(I) ions with a high detection sensitivity. From ICP-OES measurements, the calculated adsorption capacity (Qe) values are much coincide with that obtained from QCM sensor. Due to the synergetic cooperation between high surface area, large pore volumes and active ‒SO3H groups, KIT-6-SO3H exhibited a remarkable adsorption capacity for metal ions. The effect of initial solution pH on the metal ions uptake was carefully studied. Kinetics and isotherm studies further reveal that adsorption of metal ions by KIT-6-SO3H obeys second-order kinetic and Langmuir isotherm, respectively.


2021 ◽  
Vol 11 (22) ◽  
pp. 10722
Author(s):  
Abdelkader Ouakouak ◽  
Messameh Abdelhamid ◽  
Barhoumi Thouraya ◽  
Hadj-Otmane Chahinez ◽  
Grabi Hocine ◽  
...  

This study proposed a novel and low-cost adsorbent prepared from dredging sediment (DSD) for effective removal of dye in aqueous solutions. The adsorption efficiency and behavior of the DSD adsorbent toward the crystal violet (CV), a cationic dye, were investigated via batch experiments. The results showed that DSD samples contain mainly clay minerals (illite and kaolinite) and other mineral phases. In addition, DSD is a mesoporous material (Vmesopore = 94.4%), and it exhibits a relatively high surface area (~39.1 m2/g). Adsorption experiments showed that the solution’s pH slightly affects the adsorption process, and a pH of 11 gave a maximum capacity of 27.2 mg/g. The kinetic data of CV dye adsorption is well described by the pseudo–second-order and the Avrami models. The Langmuir and Liu isotherm models provide the best fit for the adsorption equilibrium data. The monolayer adsorption capacity of Langmuir reached 183.6, 198.0, and 243.6 mg/g at 293, 308, and 323 K, respectively. It was also found that the adsorption process was spontaneous (−ΔG°), exothermic (−∆H°), and increased the randomness (+∆S°) during the adsorption operation. The primary mechanisms in CV dye adsorption were ion exchange and pore filling, whereas electrostatic attraction was a minor contribution. In addition, three steps involving intraparticle diffusion occur at the same time to control the adsorption process. The results of this study highlight the excellent efficiency of DSD material as an ecofriendly sorbent for toxic dyes from water media.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20601-20611
Author(s):  
Md. Mijanur Rahman ◽  
Kenta Inaba ◽  
Garavdorj Batnyagt ◽  
Masato Saikawa ◽  
Yoshiki Kato ◽  
...  

Herein, we demonstrated that carbon-supported platinum (Pt/C) is a low-cost and high-performance electrocatalyst for polymer electrolyte fuel cells (PEFCs).


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 657
Author(s):  
Geul Han Kim ◽  
Yoo Sei Park ◽  
Juchan Yang ◽  
Myeong Je Jang ◽  
Jaehoon Jeong ◽  
...  

Developing high performance, highly stable, and low-cost electrodes for the oxygen evolution reaction (OER) is challenging in water electrolysis technology. However, Ir- and Ru-based OER catalysts with high OER efficiency are difficult to commercialize as precious metal-based catalysts. Therefore, the study of OER catalysts, which are replaced by non-precious metals and have high activity and stability, are necessary. In this study, a copper–cobalt oxide nanosheet (CCO) electrode was synthesized by the electrodeposition of copper–cobalt hydroxide (CCOH) on Ni foam followed by annealing. The CCOH was annealed at various temperatures, and the structure changed to that of CCO at temperatures above 250 °C. In addition, it was observed that the nanosheets agglomerated when annealed at 300 °C. The CCO electrode annealed at 250 °C had a high surface area and efficient electron conduction pathways as a result of the direct growth on the Ni foam. Thus, the prepared CCO electrode exhibited enhanced OER activity (1.6 V at 261 mA/cm2) compared to those of CCOH (1.6 V at 144 mA/cm2), Co3O4 (1.6 V at 39 mA/cm2), and commercial IrO2 (1.6 V at 14 mA/cm2) electrodes. The optimized catalyst also showed high activity and stability under high pH conditions, demonstrating its potential as a low cost, highly efficient OER electrode material.


2021 ◽  
Vol 22 (12) ◽  
pp. 6357
Author(s):  
Kinga Halicka ◽  
Joanna Cabaj

Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.


Sign in / Sign up

Export Citation Format

Share Document