scholarly journals Perylene Imide-Based Optical Chemosensors for Vapor Detection

Chemosensors ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Miao Zhang ◽  
Jiangfan Shi ◽  
Chenglong Liao ◽  
Qingyun Tian ◽  
Chuanyi Wang ◽  
...  

Perylene imide (PI) molecules and materials have been extensively studied for optical chemical sensors, particularly those based on fluorescence and colorimetric mode, taking advantage of the unique features of PIs such as structure tunability, good thermal, optical and chemical stability, strong electron affinity, strong visible light absorption and high fluorescence quantum yield. PI-based optical chemosensors have now found broad applications in gas phase detection of chemicals, including explosives, biomarkers of some food and diseases (such as organic amines (alkylamines and aromatic amines)), benzene homologs, organic peroxides, phenols and nitroaromatics, etc. In this review, the recent research on PI-based fluorometric and colorimetric sensors, as well as array technology incorporating multiple sensors, is reviewed along with the discussion of potential applications in environment, health and public safety areas. Specifically, we discuss the molecular design and aggregate architecture of PIs in correlation with the corresponding sensor performances (including sensitivity, selectivity, response time, recovery time, reversibility, etc.). We also provide a perspective summary highlighting the great potential for future development of PIs optical chemosensors, especially in the sensor array format that will largely enhance the detection specificity in complexed environments.

2021 ◽  
Vol 317 ◽  
pp. 202-207
Author(s):  
Juan Matmin ◽  
Nur Fatiha Ghazalli ◽  
Fazira Ilyana Abdul Razak ◽  
Hendrik O. Lintang ◽  
Mohamad Azani Jalani

The scientific investigation based on the molecular design of aromatic compounds for high-performance chemosensor is challenging. This is because their multiplex interactions at the molecular level should be precisely determined before the desired compounds can be successfully used as sensing materials. Herein, we report on the molecular design of chemosensors based on aromatic structures of benzene as the organic motif of benzene-1,3,5-tricarboxamides (BTA), as well as the benzene pyrazole complexes (BPz) side chain, respectively. In the case of BTA, the aromatic benzene acts as the centre to allow the formation of π–π stacking for one-dimensional materials having rod-like arrangements that are stabilized by threefold hydrogen bonding. We found that when nitrate was applied, the rod-like BTA spontaneously formed into a random aggregate due to the deformation of its hydrogen bonding to form inactive nitroso groups for non-optical sensing capability. For the optical chemosensor, the aromatic benzene is decorated as a side-chain of BPz to ensure that cage-shaped molecules make maximum use of their centre providing metal-metal interactions for fluorescence-based sensing materials. In particular, when exposed to benzene, Cu-BPz displayed a blue-shift of its original emission band from 616 to 572 nm (Δ = 44 nm) and emitted bright orange to green emission colours. We also observe a different mode of fluorescence-based sensing materials for Au-BPz, which shows a particular quenching mechanism resulting in 81% loss of its original intensity on benzene exposure to give less red-orange emission (λ = 612 nm). The BTA and BPz synthesized are promising high-performance supramolecular chemosensors based on the non-optical and optical sensing capability of a particular interest analyte.


Heterocycles ◽  
2007 ◽  
Vol 71 (8) ◽  
pp. 1723 ◽  
Author(s):  
Nelly Plé ◽  
Alexandrine Busch ◽  
Alain Turck ◽  
Kamila Nowicka ◽  
Alberto Barsella ◽  
...  

2019 ◽  
Vol 9 (23) ◽  
pp. 5211 ◽  
Author(s):  
Liu ◽  
Li ◽  
Yao ◽  
He ◽  
Liu ◽  
...  

Two-dimensional (2D) layered hybrid organic–inorganic perovskites have potential applications in solar cells, electroluminescent devices and radiation detection because of their unique optoelectronic properties. In this paper, four 2D layered hybrid organic–inorganic halide perovskites of (C6H5CH2NH3)2PbCl4, (C6H5CH2NH3)2PbBr4, (C6H5CH2NH3)2PbI4 and (C4H9NH3)2PbBr4 were synthesized by solvent evaporation. Their crystal structure and surface morphology were studied. The effects of different halogens and organic amines on perovskites’ absorption spectra were investigated, and the photoluminescence (PL) properties were studied by femtosecond ultrafast spectroscopy. The experimental results show that the four perovskites are well crystallized and oriented. With the increase of halogen atom number (Cl, Br, I) in turn, the UV-Vis absorption spectra peaks of perovskites redshift due to the increasing of the layer spacing, but organic amines have little effect on the spectra of perovskites. The PL intensity increases with increasing laser power, but the lifetime decreases with increasing laser power, which is mainly due to the non-geminate recombination. This research is of great significance for realizing the spectral regulation of organic–inorganic hybrid perovskites and promoting their application in nano-photonics and optoelectronic devices.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 917 ◽  
Author(s):  
Shuai Chen ◽  
Zexu Xue ◽  
Nan Gao ◽  
Xiaomei Yang ◽  
Ling Zang

Perylene tetracarboxylic diimide (PDI) and its derivatives exhibit excellent thermal, chemical and optical stability, strong electron affinity, strong visible-light absorption and unique fluorescence on/off features. The combination of these features makes PDIs ideal molecular frameworks for development in a broad range of sensors for detecting environmental pollutants such as heavy metal ions (e.g., Cu2+, Cd2+, Hg2+, Pd2+, etc.), inorganic anions (e.g., F−, ClO4−, PO4−, etc.), as well as poisonous organic compounds such as nitriles, amines, nitroaromatics, benzene homologues, etc. In this review, we provide a comprehensive overview of the recent advance in research and development of PDI-based fluorescent sensors, as well as related colorimetric and multi-mode sensor systems, for environmental detection in aqueous, organic or mixed solutions. The molecular design of PDIs and structural optimization of the sensor system (regarding both sensitivity and selectivity) in response to varying analytes are discussed in detail. At the end, a perspective summary is provided covering both the key challenges and potential solutions for the future development of PDI-based optical sensors.


2001 ◽  
Vol 73 (3) ◽  
pp. 543-548 ◽  
Author(s):  
Vivian Wing-Wah Yam

A series of soluble di- and polynuclear transition-metal acetylides with rich luminescence behavior have been designed and successfully isolated. The photophysical and photochemical properties have been studied. Luminescent polynuclear metal complexes have also been obtained based on the metal chalcogenide building block. These high-nuclearity transition-metal chalcogenide complexes have been structurally characterized and shown to display rich luminescence behavior. Various approaches and strategies to design and synthesize luminescent polynuclear metal complexes that may find potential applications as chemosensors and luminescence signalling devices will also be described.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Chengkang Tang ◽  
Feng Qiu ◽  
Xiaojun Zhao

Self-assembling surfactant-like peptides have been explored as emerging nanobiomaterials in recent years. These peptides are usually amphiphilic, typically possessing a hydrophobic moiety and a hydrophilic moiety. The structural characteristics can promote many peptide molecules to self-assemble into various nanostructures. Furthermore, properties of peptide molecules such as charge distribution and geometrical shape could also alter the formation of the self-assembling nanostructures. Based on their diverse self-assembling behaviours and nanostructures, self-assembling surfactant-like peptides exhibit great potentials in many fields, including membrane protein stabilization, drug delivery, and tissue engineering. This review mainly focuses on recent advances in studying self-assembling surfactant-like peptides, introducing their designs and the potential applications in nanobiotechnology.


NANO ◽  
2016 ◽  
Vol 11 (07) ◽  
pp. 1650073 ◽  
Author(s):  
Lu Liu ◽  
Hu Xu ◽  
Bing Shen ◽  
Xinhua Zhong

Pentaerythritol tetrakis 3-mercaptopropionate (PTMP) grafted poly(acryl acid) (PAA) ionic hydrophilic oligomer PAA-PTMP (PP) and dihydrolipoic acid (DHLA) grafted methoxypoly(ethylene glycol) (mPEG) nonionic hydrophilic oligomer mPEG-DHLA (PD) have been designed, synthesized and used as co-capping ligands in water-solubilization of hydrophobic quantum dots (QDs) via ligand exchange. The obtained oligomers with multi-thiol groups could bind strongly to the surface atoms of QDs. Meanwhile, the carboxyl groups (from PP) and mPEG segment (from PD) can render QDs water-soluble, and the free carboxylic groups can possibly be used for the further bioconjugation. The resulting water-soluble QDs have been characterized by ultraviolet-visible (UV-Vis), fluorescence, Fourier transform infrared (FTIR) spectroscopy as well as transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. The water-soluble QDs have relatively small hydrodynamic size (10[Formula: see text]12 nm), and importantly, retain high fluorescence quantum yields (up to 45%) compared with that of the originally hydrophobic QDs (49%). In addition, they have tunable surface charges and show excellent colloidal stability over a relatively broad pH range ([Formula: see text]), in high salt concentration, and even after thermal treatment at 100[Formula: see text]C. These results indicate that the water-soluble QDs coated by PP and PD oligomers have potential applications in cellular imaging and biosensor.


Author(s):  
Xiaoxiao Wang ◽  
Cheng Zhong ◽  
Guohua Xie ◽  
Xingguo Chen

Rational molecular design is critical to build high-efficiently red-NIR fluorescent emitters. In this work, a thiophene-fused benzothiadiazole (BTT) unit has been chosen as a strong electron-acceptor to build donor-acceptor (D-A)...


JACS Au ◽  
2021 ◽  
Author(s):  
Joonyoung F. Joung ◽  
Minhi Han ◽  
Jinhyo Hwang ◽  
Minseok Jeong ◽  
Dong Hoon Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document