High-Quality Water-Soluble Core/Shell/Shell CdSe/CdS/ZnS Quantum Dots Balanced by Ionic and Nonionic Hydrophilic Capping Ligands

NANO ◽  
2016 ◽  
Vol 11 (07) ◽  
pp. 1650073 ◽  
Author(s):  
Lu Liu ◽  
Hu Xu ◽  
Bing Shen ◽  
Xinhua Zhong

Pentaerythritol tetrakis 3-mercaptopropionate (PTMP) grafted poly(acryl acid) (PAA) ionic hydrophilic oligomer PAA-PTMP (PP) and dihydrolipoic acid (DHLA) grafted methoxypoly(ethylene glycol) (mPEG) nonionic hydrophilic oligomer mPEG-DHLA (PD) have been designed, synthesized and used as co-capping ligands in water-solubilization of hydrophobic quantum dots (QDs) via ligand exchange. The obtained oligomers with multi-thiol groups could bind strongly to the surface atoms of QDs. Meanwhile, the carboxyl groups (from PP) and mPEG segment (from PD) can render QDs water-soluble, and the free carboxylic groups can possibly be used for the further bioconjugation. The resulting water-soluble QDs have been characterized by ultraviolet-visible (UV-Vis), fluorescence, Fourier transform infrared (FTIR) spectroscopy as well as transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. The water-soluble QDs have relatively small hydrodynamic size (10[Formula: see text]12 nm), and importantly, retain high fluorescence quantum yields (up to 45%) compared with that of the originally hydrophobic QDs (49%). In addition, they have tunable surface charges and show excellent colloidal stability over a relatively broad pH range ([Formula: see text]), in high salt concentration, and even after thermal treatment at 100[Formula: see text]C. These results indicate that the water-soluble QDs coated by PP and PD oligomers have potential applications in cellular imaging and biosensor.

2018 ◽  
Vol 42 (12) ◽  
pp. 9496-9500 ◽  
Author(s):  
Min Zhang ◽  
Zhi-Quan Tian ◽  
Dong-Liang Zhu ◽  
He He ◽  
San-Wei Guo ◽  
...  

After replacing oleylamine with (3-aminopropyl)triethoxysilane, the stability of the as-prepared CsPbBr3 QDs was significantly improved.


RSC Advances ◽  
2016 ◽  
Vol 6 (44) ◽  
pp. 38183-38186 ◽  
Author(s):  
Li-Juan Shi ◽  
Chun-Nan Zhu ◽  
He He ◽  
Dong-Liang Zhu ◽  
Zhi-Ling Zhang ◽  
...  

Near-infrared Ag2Se QDs with distinct absorption features ranging between 830–954 nm and fluorescence quantum yields up to 23.4% were controllably synthesized, and the molar extinction coefficients of the Ag2Se QDs were determined.


2010 ◽  
Vol 63 (4) ◽  
pp. 712 ◽  
Author(s):  
Hai-Ying Wang ◽  
Gang Chen ◽  
Xiao-Ping Xu ◽  
Shun-Jun Ji

A series of newly-developed bipolar triphenylamine benzimidazole derivatives, containing both hole-transporting and electron-transporting moieties, have been completely characterized by 1H and 13C NMR and HRMS, as well as their thermal, optical, and electrochemical properties. The results indicate that these compounds exhibit high fluorescence quantum yields, desirable HOMO levels and high thermal stabilities. Quantum chemical calculations were used to obtain the optimized ground-state geometries, spatial distributions of the HOMO, and the LUMO levels of these compounds. The agreement between experimental and calculated data suggests such compounds may have potential applications in organic light emitting diodes materials.


Synthesis ◽  
2021 ◽  
Author(s):  
Xianglong Chu ◽  
Yadi Niu ◽  
Chen Ma ◽  
Xiaodong Wang ◽  
Yunliang Lin ◽  
...  

AbstractA rapid access to a series of N-heteroarene fluorophores has been developed on the basis of the palladium-catalyzed direct oxidative C–H/C–H coupling of imidazo[1,2-a]pyridines with thiophenes/furans. The photophysical properties–structure relationship was systematically investigated. The resulting N-heteroarene fluorophores present color-tunable emissions (λem: 431–507 nm in CH2Cl2) and high fluorescence quantum yields (up to 91% in CH2Cl2).


2018 ◽  
Vol 6 (42) ◽  
pp. 11336-11347 ◽  
Author(s):  
Mahdi Chaari ◽  
Zsolt Kelemen ◽  
José Giner Planas ◽  
Francesc Teixidor ◽  
Duane Choquesillo-Lazarte ◽  
...  

m-Carborane has demonstrated to be a perfect platform to boost the fluorescence properties of anthracene, giving rise to high fluorescence quantum yields in solution and also retaining fluorescence emission in the aggregate state.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 339 ◽  
Author(s):  
Tao Zhang ◽  
Tim Liedl

Owing to their unique optical properties, colloidal quantum dots (QDs) have attracted much attention as versatile fluorescent markers with broad biological and physical applications. On the other hand, DNA-based assembly has proven to be a powerful bottom-up approach to create designer nanoscale objects and to use these objects for the site-directed arrangement of guest components. To achieve good colloidal stability and accurate positioning of QDs on DNA templates, robust QD surface functionalization is crucial. Here, we present a simple and reliable conjugation method for the direct attachment of DNA molecules to QDs. Phosphorothiolated regions of chimera oligonucleotides are attached and incorporated into a ZnS layer freshly growing in situ on QDs that were rendered water soluble with hydrophilic ligands in a prior step. The reaction can be completed in a 2 mL plastic tube without any special equipment. The utility of these DNA-labeled QDs is demonstrated via prototypical assemblies such as QDs dimers with various spacings and chiral helical architectures.


2006 ◽  
Vol 12 (3) ◽  
pp. 824-831 ◽  
Author(s):  
Hajime Maeda ◽  
Tomohiro Maeda ◽  
Kazuhiko Mizuno ◽  
Kazuhisa Fujimoto ◽  
Hisao Shimizu ◽  
...  

2008 ◽  
Vol 17 (04) ◽  
pp. 473-485 ◽  
Author(s):  
XIAOQIN ZHU ◽  
YING QIAN ◽  
WEI HUANG ◽  
CHANGGUI LU ◽  
YIPING CUI

Two symmetrical TPA chromophores containing 1,3,4-oxadiazole group were designed and synthesized through the Wittig–Horner reaction. All compounds were characterized by NMR, IR, UV and melting point. Chromophore I and II showed good thermal stability and did lose less than 5% weight on heating to about 300°C. The electrochemical property was explored by cyclic voltammetry. The HOMO and LUMO energy of compound I were estimated to be -3.65 eV and -1.09 eV. That of compound II were -3.69 eV and -1.10 eV. Both chromophores exhibited a positive solvatochromic behavior. In CH2Cl2 , the maximum peaks of single-photon-excited fluorescence (SPEF) were at 512 nm for compound I and at 495 nm for compound II with high fluorescence quantum yields 0.73 and 0.70, respectively. The two-photon-excited fluorescence (TPEF) had also been investigated. Pumped by femtosecond laser at 800 nm, strong up-conversion emissions with the central wavelength were at 532 nm for compound I and 550 nm for compound II in the solution of CH2Cl2 .


Author(s):  
Mireille Kamariza ◽  
Samantha G. L. Keyser ◽  
Ashley Utz ◽  
Benjamin D. Knapp ◽  
Green Ahn ◽  
...  

ABSTRACTThere is an urgent need for point-of-care tuberculosis (TB) diagnostic methods that are fast, inexpensive, and operationally simple. Here, we report on a bright solvatochromic dye trehalose conjugate that specifically detects Mycobacterium tuberculosis (Mtb) in minutes. 3-hydroxychromone (3HC) dyes, known to yield high fluorescence quantum yields, exhibit shifts in fluorescence intensity in response to changes in environmental polarity. We synthesized two analogs of 3HC-trehalose conjugates (3HC-2-Tre and 3HC-3-Tre) and determined that 3HC-3-Tre has exceptionally favorable properties for Mtb detection. 3HC-3-Tre-labeled mycobacterial cells displayed a 10-fold increase in fluorescence intensity compared to our previously reports on the dye 4,4-N,N-dimethylaminonapthalimide (DMN-Tre). Excitingly, we detected fluorescent Mtb cells within 10 minutes of probe treatment. Thus, 3HC-3-Tre permits rapid visualization of mycobacteria that ultimately could empower improved Mtb detection at the point-of-care in low-resource settings.


Sign in / Sign up

Export Citation Format

Share Document