scholarly journals Estimating the Impact of Artificially Injected Stratospheric Aerosols on the Global Mean Surface Temperature in the 21th Century

Climate ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 85 ◽  
Author(s):  
Sergei Soldatenko

In this paper, we apply the optimal control theory to obtain the analytic solutions of the two-component globally averaged energy balance model in order to estimate the influence of solar radiation management (SRM) operations on the global mean surface temperature in the 21st century. It is assumed that SRM is executed via injection of sulfur aerosols into the stratosphere to limit the global temperature increase in the year 2100 by 1.5 °C and keeping global temperature over the specified period (2020–2100) within 2 °C as required by the Paris climate agreement. The radiative forcing produced by the rise in the atmospheric concentrations of greenhouse gases is defined by the Representative Concentration Pathways and the 1pctCO2 (1% per year CO2 increase) scenario. The goal of SRM is formulated in terms of extremal problem, which entails finding a control function (the albedo of aerosol layer) that minimizes the amount of aerosols injected into the upper atmosphere to satisfy the Paris climate target. For each climate change scenario, the optimal albedo of the aerosol layer and the corresponding global mean surface temperature changes were obtained. In addition, the aerosol emission rates required to create an aerosol cloud with optimal optical properties were calculated.

2017 ◽  
Vol 12 (5) ◽  
pp. 054010 ◽  
Author(s):  
Paul-Arthur Monerie ◽  
Marie-Pierre Moine ◽  
Laurent Terray ◽  
Sophie Valcke

2011 ◽  
Vol 2 (2) ◽  
pp. 213-221 ◽  
Author(s):  
A. Jarvis

Abstract. Because of the fundamental role feedbacks play in determining the response of surface temperature to perturbations in radiative forcing, it is important we understand the dynamic characteristics of these feedbacks. Rather than attribute the aggregate surface temperature feedback to particular physical processes, this paper adopts a linear systems approach to investigate the partitioning with respect to the timescale of the feedbacks regulating global mean surface temperature in climate models. The analysis reveals that there is a dominant net negative feedback realised on an annual timescale and that this is partially attenuated by a spectrum of positive feedbacks with characteristic timescales in the range 10 to 1000 yr. This attenuation was composed of two discrete phases which are attributed to the equilibration of "diffusive – mixed layer" and "circulatory – deep ocean" ocean heat uptake. The diffusive equilibration was associated with time constants on the decadal timescale and accounted for approximately 75 to 80 percent of the overall ocean heat feedback, whilst the circulatory equilibration operated on a centennial timescale and accounted for the remaining 20 to 25 percent of the response. This suggests that the dynamics of the transient ocean heat uptake feedback first discussed by Baker and Roe (2009) tends to be dominated by loss of diffusive heat uptake in climate models, rather than circulatory deep ocean heat equilibration.


2015 ◽  
Vol 28 (17) ◽  
pp. 6608-6625 ◽  
Author(s):  
Leon D. Rotstayn ◽  
Mark A. Collier ◽  
Drew T. Shindell ◽  
Olivier Boucher

Abstract Linear regression is used to examine the relationship between simulated changes in historical global-mean surface temperature (GMST) and global-mean aerosol effective radiative forcing (ERF) in 14 climate models from CMIP5. The models have global-mean aerosol ERF that ranges from −0.35 to −1.60 W m−2 for 2000 relative to 1850. It is shown that aerosol ERF is the dominant factor that determines intermodel variations in simulated GMST change: correlations between aerosol ERF and simulated changes in GMST exceed 0.9 for linear trends in GMST over all periods that begin between 1860 and 1950 and end between 1995 and 2005. Comparison of modeled and observed GMST trends for these time periods gives an inferred global-mean aerosol ERF of −0.92 W m−2. On average, transient climate sensitivity is roughly 40% larger with respect to historical forcing from aerosols than well-mixed greenhouse gases. This enhanced sensitivity explains the dominant effect of aerosol forcing on simulated changes in GMST: it is estimated that 85% of the intermodel variance of simulated GMST change is explained by variations in aerosol ERF, but without the enhanced sensitivity less than half would be explained. Physically, the enhanced sensitivity is caused by a combination of 1) the larger concentration of aerosol forcing in the midlatitudes of the Northern Hemisphere, where positive feedbacks are stronger and transient warming is faster than in the Southern Hemisphere, and 2) the time evolution of aerosol forcing, which levels out earlier than forcing from well-mixed greenhouse gases.


2019 ◽  
Author(s):  
Junbo Duan ◽  
Lanling Zhao ◽  
Qing Wang ◽  
Pei Li

Abstract. This paper aims to address the continuous debate of whether a hiatus occurred in the turn of this century. Several models have been employed to fit the global mean surface temperature data, and the results suggest that the allegation of an occurrence of hiatus lacks statistical evidence. However, these models had potential deficiencies in their capacity for detecting breakpoints, thereby weakening the arguments that deny the existence of a hiatus. To address this issue, we propose an improved sparse representation model, which can automatically segment and fit temperature records using piecewise polynomials. Simulations revealed improved detection performance; studies on five prominent global temperature records produced 2 to 6 breakpoints, none of which occurred after the year 1976, thus reinforcing arguments denying the existence of a 20th century hiatus.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 654
Author(s):  
Sergei Soldatenko

Using the two-box energy balance model (EBM), we explore the climate system response to radiative forcing generated by variations in the concentrations of stratospheric aerosols and estimate the effect of uncertainties in radiative feedbacks on changes in global mean surface temperature anomaly used as an indicator of the response of the climate system to external radiative perturbations. Radiative forcing generated by stratospheric sulfate aerosols from the second-largest volcanic eruption in the 20th century, the Mount Pinatubo eruption in June 1991, was chosen for this research. The global mean surface temperature response to a specified change in radiative forcing is estimated as a convolution of the derived impulse response function corresponding to EBM with a function that describes the temporal change in radiative forcing. The influence of radiative feedback uncertainties on changes in the global mean surface temperature is estimated using several “versions” of the EBM. The parameters for different “versions” were identified by applying a specific procedure for calibrating the two-box EBM parameters using the results of climate change simulations conducted with coupled atmosphere–ocean general circulation models from the Coupled Model Intercomparison Project phase 5 (CMIP5). Changes in the global mean surface temperature caused by stratospheric aerosol forcing are found to be highly sensitive not only to radiative feedbacks but also to climate system inertia defined by the effective heat capacity of the atmosphere–land–ocean mixed layer system, as well as to deep-ocean heat uptake. The results obtained have direct implications for a better understanding of how uncertainties in climate feedbacks, climate system inertia and deep-ocean heat uptake affect climate change modelling.


2013 ◽  
Vol 9 (1) ◽  
pp. 173-189 ◽  
Author(s):  
A. Goldner ◽  
M. Huber ◽  
R. Caballero

Abstract. In this study, we compare the simulated climatic impact of adding an Antarctic ice sheet (AIS) to the "greenhouse world" of the Eocene and removing the AIS from the modern world. The modern global mean surface temperature anomaly (ΔT) induced by Antarctic Glaciation depends on the background CO2 levels and ranges from −1.22 to −0.18 K. The Eocene ΔT is nearly constant at ~−0.25 K. We calculate an climate sensitivity parameter S[Antarctica] which we define as ΔT divided by the change in effective radiative forcing (ΔQAntarctica) which includes some fast feedbacks imposed by prescribing the glacial properties of Antarctica. The main difference between the modern and Eocene responses is that a negative cloud feedback warms much of the Earth's surface as a large AIS is introduced in the Eocene, whereas this cloud feedback is weakly positive and acts in combination with positive sea-ice feedbacks to enhance cooling introduced by adding an ice sheet in the modern. Because of the importance of cloud feedbacks in determining the final temperature sensitivity of the AIS, our results are likely to be model dependent. Nevertheless, these model results suggest that the effective radiative forcing and feedbacks induced by the AIS did not significantly decrease global mean surface temperature across the Eocene–Oligocene transition (EOT −34.1 to 33.6 Ma) and that other factors like declining atmospheric CO2 are more important for cooling across the EOT. The results illustrate that the efficacy of AIS forcing in the Eocene is not necessarily close to one and is likely to be model and state dependent. This implies that using EOT paleoclimate proxy data by itself to estimate climate sensitivity for future climate prediction requires climate models and consequently these estimates will have large uncertainty, largely due to uncertainties in modelling low clouds.


2015 ◽  
Vol 28 (9) ◽  
pp. 3834-3845 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng ◽  
Anthony Rosati ◽  
Gabriel A. Vecchi ◽  
Andrew T. Wittenberg

Abstract Portions of western North America have experienced prolonged drought over the last decade. This drought has occurred at the same time as the global warming hiatus—a decadal period with little increase in global mean surface temperature. Climate models and observational analyses are used to clarify the dual role of recent tropical Pacific changes in driving both the global warming hiatus and North American drought. When observed tropical Pacific wind stress anomalies are inserted into coupled models, the simulations produce persistent negative sea surface temperature anomalies in the eastern tropical Pacific, a hiatus in global warming, and drought over North America driven by SST-induced atmospheric circulation anomalies. In the simulations herein the tropical wind anomalies account for 92% of the simulated North American drought during the recent decade, with 8% from anthropogenic radiative forcing changes. This suggests that anthropogenic radiative forcing is not the dominant driver of the current drought, unless the wind changes themselves are driven by anthropogenic radiative forcing. The anomalous tropical winds could also originate from coupled interactions in the tropical Pacific or from forcing outside the tropical Pacific. The model experiments suggest that if the tropical winds were to return to climatological conditions, then the recent tendency toward North American drought would diminish. Alternatively, if the anomalous tropical winds were to persist, then the impact on North American drought would continue; however, the impact of the enhanced Pacific easterlies on global temperature diminishes after a decade or two due to a surface reemergence of warmer water that was initially subducted into the ocean interior.


2007 ◽  
Vol 20 (5) ◽  
pp. 843-855 ◽  
Author(s):  
J. A. Kettleborough ◽  
B. B. B. Booth ◽  
P. A. Stott ◽  
M. R. Allen

Abstract A method for estimating uncertainty in future climate change is discussed in detail and applied to predictions of global mean temperature change. The method uses optimal fingerprinting to make estimates of uncertainty in model simulations of twentieth-century warming. These estimates are then projected forward in time using a linear, compact relationship between twentieth-century warming and twenty-first-century warming. This relationship is established from a large ensemble of energy balance models. By varying the energy balance model parameters an estimate is made of the error associated with using the linear relationship in forecasts of twentieth-century global mean temperature. Including this error has very little impact on the forecasts. There is a 50% chance that the global mean temperature change between 1995 and 2035 will be greater than 1.5 K for the Special Report on Emissions Scenarios (SRES) A1FI scenario. Under SRES B2 the same threshold is not exceeded until 2055. These results should be relatively robust to model developments for a given radiative forcing history.


Sign in / Sign up

Export Citation Format

Share Document