scholarly journals Monitoring Hydrometeorological Droughts Using a Simplified Precipitation Index

Climate ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 19 ◽  
Author(s):  
Abdullah A. Alsumaiei

Efficient water management plans should rely on quantitative metrics for assessing water resource shortage scenarios. This study develops a simplified precipitation index (PI) requiring precipitation data only in order to assess hydrometeorological droughts affecting various hydrological systems. The PI index is inspired by the famous Standardized Precipitation Index (SPI), and it aims to provide the same indication for drought severity and duration while overcoming the disadvantage of needing hydrological data normalization. Avoiding hydrological data normalization overcomes the non-satisfactory results of this procedure that were reported in previous studies. Analysis of groundwater drought drivers in the arid region of Kuwait is presented to test the index applicability at timescales 12 and 24 months using available historical precipitation data from 1958 to 2017. A bivariate joint probability analysis was conducted by Clayton copula to assess the occurrence of certain drought severities and durations. The results showed that PI is comparable to the original SPI and provides drought severity linearly propagating with respect to time. This index constitutes a simple means to help water managers assess and describe the impact of droughts in precipitation-controlled systems and establish appropriate water management plans.

2006 ◽  
Vol 54 (6-7) ◽  
pp. 395-403 ◽  
Author(s):  
L. Wolf ◽  
J. Klinger ◽  
I. Held ◽  
H. Hötzl

The management of urban groundwater resources is directly linked to urban water supply and drainage concepts. A proper integration of groundwater into urban water management plans is recommended for long-term planning. The paper describes the development of a new modelling suite which addresses the urban water and solute balance in a holistic way. Special focus has been placed on the assessment of the impact of sewer leakage on groundwater in four case study cities. Tools for the prediction of sewer leakage including the assessment of uncertainties are now available. Field investigations in four European case study cities were able to trace the influence of sewer leakage on urban groundwater using microbiological indicators and pharmaceutical residues.


1996 ◽  
Vol 34 (12) ◽  
pp. 9-16 ◽  
Author(s):  
J. de Jong ◽  
J. T. van Buuren ◽  
J. P. A. Luiten

Sustained developments is the target of almost every modern water management policy. Sustainability is focused on human life and on the ecological quality of our environment. Both aspects are essential for life on earth. Within a river catchment area this means that well balanced relations have to be laid between human activities and ecological aspects in the involved areas. Policy analysis is especially looking for the most efficient way to analyse and to overcome bottlenecks. In The Netherlands project “The Aquatic Outlook” all these elements are worked out in a nationwide scale, providing the scientific base and policy analysis from which future water management plans can be derived.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S472-S472
Author(s):  
Matthew B Crist ◽  
John R McQuiston ◽  
Maroya Spalding Walters ◽  
Elizabeth Soda ◽  
Heather Moulton-Meissner ◽  
...  

Abstract Background Elizabethkingia (EK) are non-motile gram-negative rods found in soil and water and are an emerging cause of healthcare-associated infections (HAIs). We describe Centers for Disease Control and Prevention (CDC) consultations for healthcare-associated EK infections and outbreaks. Methods CDC maintains records of consultations with state or local health departments related to HAI outbreaks and infection control breaches. We reviewed consultations involving EK species as the primary pathogen of concern January 1, 2013 to December 31, 2019 and summarized data on healthcare settings, infection types, laboratory analysis, and control measures. Results We identified 9 consultations among 8 states involving 73 patient infections. Long-term acute-care hospitals (LTACHs) accounted for 4 consultations and 32 (43%) infections, and skilled nursing facilities with ventilated patients (VSNFs) accounted for 2 consultations and 31 (42%) infections. Other settings included an acute care hospital, an assisted living facility, and an outpatient ear, nose, and throat clinic. Culture sites included the respiratory tract (n=7 consultations), blood (n=4), and sinus tract (n=1), and E. anophelis was the most commonly identified species. Six consultations utilized whole genome sequencing (WGS); 4 identified closely related isolates from different patients and 2 also identified closely related environmental and patient isolates. Mitigation measures included efforts to reduce EK in facility water systems, such as the development of water management plans, consulting water management specialists, flushing water outlets, and monitoring water quality, as well as efforts to minimize patient exposure such as cleaning of shower facilities and equipment, storage of respiratory therapy supplies away from water sources, and use of splash guards on sinks. Conclusion EK is an important emerging pathogen that causes HAI outbreaks, particularly among chronically ventilated patients. LTACHs and VSNFs accounted for the majority of EK consultations and patient infections. Robust water management plans and infection control practices to minimize patient exposure to contaminated water in these settings are important measures to reduce infection risk among vulnerable patients. Disclosures All Authors: No reported disclosures


2008 ◽  
Vol 12 (1) ◽  
pp. 317-331 ◽  
Author(s):  
P. S. Lupo Stanghellini ◽  
D. Collentine

Abstract. The Water Framework Directive (WFD, directive 2000/60/EC) was created to ensure the sustainable use of water resources in the European Union. A central guideline included throughout the directive is a call for the participation of stakeholders in the management of these resources. Involving stakeholders is an important step to ensure that catchment management plans take into consideration local experience in the development of these plans and the impact of the plans on local interests. This paper describes and analyses the results of a series of workshops to facilitate implementation of the WFD at a catchment level based on the stakeholder participation model, CATCH. To test the usefulness of the CATCH model, developed for water management in a catchment area, a sub-catchment in an alpine valley in the north-east of Italy, the Alta Valsugana in the Province of Trento, was chosen as the setting for a series of workshops. In this valley water is fundamental for activities associated with agriculture, domestic use, energy production, sports and recreation. In the recent past the valley has had serious problems related to water quality and quantity. Implementation of water management plans under the WFD may lead to conflicts within the catchment between different stakeholder interest groups. Including stakeholders in the development of management plans not only follows the guidelines of the WFD but also could result in a more locally adapted and acceptable plan for the catchment. A new stakeholder analysis methodology was developed and implemented in order to identify the relevant stakeholders of the area and then two sets of workshops involving the key stakeholders identified were conducted in Spring 2006. The CATCH meetings were a new experience for the participants, who had to deal with both the principles of the WFD in general and the participation requirement in particular. During the meetings, the CATCH model played a very important role in structuring the participatory process. It provided a general framework consisting of a sequence of steps that helped the participants to reach the goal of the process: the identification and evaluation of measures to improve water management in the catchment. This test of the CATCH model showed it to be a dynamic and flexible tool, useful for structuring and guiding the participation process, without imposing undue restrictions on influencing the outcome of stakeholder participation in a small catchment.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 766 ◽  
Author(s):  
Nicola Ulibarri ◽  
Nataly Escobedo Garcia

Environmental governance scholars argue that optimal environmental performance can be achieved by matching the scale of governance to the scale of the resource being managed. In the case of water, this means managing at the scale of the watershed. However, many watersheds lack a single watershed-scale organization with authority over all water resources and instead rely on cross-jurisdiction coordination or collaboration among diverse organizations. To understand what “watershed governance” looks like fully, this paper maps organizations with rights to use, regulate, or manage water in four subwatersheds in California (the American, Cosumnes, and Kings Rivers in the Sacramento-San Joaquin watershed and the Shasta River in the Klamath watershed). We assemble datasets of water organizations, water rights holders, and water management plans and use content analysis and social network analysis to explore what water management looks like in the absence of a single basin authority. We describe the institutional complexity that exists in each watershed, compare the physical and institutional interconnections between actors in the watersheds, and then ask to what extent these connections map onto watershed boundaries. We find that the ways in which water management is complex takes very different forms across the four watersheds, despite their being located in a similar political, social, and geographic context. Each watershed has drastically different numbers of actors and uses a very different mix of water sources. We also see very different levels of coordination between actors in each watershed. Given these differences, we then discuss how the institutional reforms needed to create watershed-scale management are unique for each watershed. By building a stronger comparative understanding of what watershed governance actually entails, this work aims to build more thoughtful recommendations for building institutional fit.


Author(s):  
Andrzej SADURSKI ◽  
Elzbieta Przytuła

The term groundwater resources was introduced to hydrogeology from economic geology similarly to the resources of ore bodies almost a hundred years ago. It has been used for the need of physical planning, investment in new water intakes, and water management. Discussion on the groundwater resources started in the past after implementation of new methods of their evaluation, e.g. analytical approaches, and physical and then numerical modelling techniques. The ecological aspects of water demand, indicated in the Water Framework Directive, oblige the EU countries to introduce a new idea for the estimation of groundwater resources. This idea is also presented in the water management plans for river catchment areas. Distribution of available groundwater resources in the country and comparison with the groundwater exploitation is the background of proper, sustainable management of its resources. Available groundwater resources of the country, understood as a total amount of disposable and prospective groundwater resources, is 36.4 million m3/day (as of December 31, 2015), including 21.4 million m3/day of disposable resources, and 15 million m3/day of estimated prospective resources.


2007 ◽  
Vol 22 (7) ◽  
pp. 877-894 ◽  
Author(s):  
Bojan Srdjevic ◽  
Yvonilde Dantas Pinto Medeiros

Hydrology ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Bachisio Mario Padedda ◽  
Antonella Lugliè ◽  
Giuseppina Grazia Lai ◽  
Filippo Giadrossich ◽  
Cecilia Teodora Satta ◽  
...  

In water management plans, all human impacts on the aquatic environment are quantified and evaluated. For this purpose, lake-related assessment methods of watersheds are needed. The aim of this study is to present the environmental condition along the watershed–lake continuum of Lake Baratz, located in the northeastern part of Sardinia. We provide a method to evaluate the impact of a small watershed area on the trophic state of this ancient Mediterranean natural lake. This study demonstrates the potentialities of coupling simple land structure-based models with empirical ones, allowing one to hierarchize, interpret, and predict the relationships among the watershed ecological unity and lake trophic conditions at multiple spatial and temporal scales. It also demonstrates how the impact of single and interacting nutrient stressors can have a different impact on the trophic status which, in particular, applies to autotrophs, constituting a key response in the ecosystem. We suggest that the stressor hierarchy should be considered as a way of prioritizing actions in the cost-effective implementation of conservation and management plans.


Sign in / Sign up

Export Citation Format

Share Document