scholarly journals Relative Ti2AlC Scale Volatility under 1300 °C Combustion Conditions

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 142 ◽  
Author(s):  
James L. Smialek

Turbine environments may degrade high temperature ceramics because of volatile hydroxide reaction products formed in water vapor. Accordingly, the volatility of transient TiO2 and steady-state Al2O3 scales formed on the oxidation-resistant Ti2AlC MAX phase ceramic was examined in 1300 °C high velocity (Mach 0.3, 100 m/s) and high pressure (6 atm, 25 m/s) burner rig tests (BRT). Unlike metals, the ceramic was stable at 1300 °C. Unlike SiC and Si3N4, neither burner test produced a weight loss, unless heavily pre-oxidized. Lower mass gains were produced in the BRT compared to furnace tests. The commonly observed initial, fast TiO2 transient scale was preferentially removed in hot burner gas (~10% water vapor). A lesser degree of gradual Al2O3 volatilization occurred, indicated by grain boundary porosity and crystallographic etching. Modified cubic-linear (growth-volatility) kinetics are suggested. Gas velocity and water vapor pressure play specific roles for each scale. Furthermore, a 7YSZ TBC on Ti2AlC survived for 500 h in the Mach 0.3 burner test at 1300 °C with no indication of volatility or spalling.

Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Electron microscopy and diffraction of biological materials in the hydrated state requires the construction of a chamber in which the water vapor pressure can be maintained at saturation for a given specimen temperature, while minimally affecting the normal vacuum of the remainder of the microscope column. Initial studies with chambers closed by thin membrane windows showed that at the film thicknesses required for electron diffraction at 100 KV the window failure rate was too high to give a reliable system. A single stage, differentially pumped specimen hydration chamber was constructed, consisting of two apertures (70-100μ), which eliminated the necessity of thin membrane windows. This system was used to obtain electron diffraction and electron microscopy of water droplets and thin water films. However, a period of dehydration occurred during initial pumping of the microscope column. Although rehydration occurred within five minutes, biological materials were irreversibly damaged. Another limitation of this system was that the specimen grid was clamped between the apertures, thus limiting the yield of view to the aperture opening.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 335-348
Author(s):  
YOUNES KHOSRAVI ◽  
HASAN LASHKARI ◽  
HOSEIN ASAKEREH

Recognitionanddetectionofclimaticparameters inhave animportant role inclimate change monitoring. In this study, the analysis of oneofthe most importantparameters, water vapor pressure (WVP), was investigated. For this purpose, two non-parametric techniques, Mann-Kendall and Sen's Slope Estimator, were used to analyze the WVP trend and to determine the magnitude of the trends, respectively. To analyze these tests, ground station observations [10 stations for period of 44 years (1967-2010)] and gridded data [pixels with the dimension of 9 × 9 km over a 30-year period (1981-2010)] in South and SouthwestofIran were used. By programming in MATLAB software, the monthly, seasonal and annual WVP time series were extracted and MK and Sen's slope estimator tests were done. The results of monthly MK test on ground station observations showed that the significant downward trends are more considerable than significant upward trends. It also showed that the WVP highest frequency was more in warm months, April to September and the highest frequency of significant trends slope was in February and May. The spatial distribution of MK test of monthly gridded WVP time series showed that the upward trends were detected mostly in western zone and near the Persian Gulf in August. On the other hand, the downward trends through months. The maximum and minimum values of positive trends slope occurred in warm months and cold months, respectively. The analysis of the MK test of the annual WVP time series indicated the upward significant trends in the southeast and southwest zones of study area.  


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Pamela L. Dickrell ◽  
N. Argibay ◽  
Osman L. Eryilmaz ◽  
Ali Erdemir ◽  
W. Gregory Sawyer

Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H2O and O2. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.


1988 ◽  
Vol 58 (2) ◽  
pp. 86-90 ◽  
Author(s):  
Kozo Tsubouchi

The thickness of the still air layer adhering to perforated plastic plates and a fabric was investigated in terms of the water vapor pressure gradient in the zone of diffusion above the samples. The water vapor pressures above the samples were determined from measurements using a temperature and relative humidity sensor. To analyze the thickness of the still air layer for a wide range of evaporation rates, the hole diameter and the number of holes per unit area were changed and the measurements were under different temperature and humidity/gradient conditions. The thickness of the still air layer corresponded to a distance of 10 mm from the sample surface and was not related to the surface construction and materials.


Sign in / Sign up

Export Citation Format

Share Document