scholarly journals Electrophoretic Deposition and Characteristics of Chitosan–Nanosilver Composite Coatings on a Nanotubular TiO2 Layer

Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 245
Author(s):  
Michał Bartmański ◽  
Łukasz Pawłowski ◽  
Andrzej Zieliński ◽  
Aleksandra Mielewczyk-Gryń ◽  
Gabriel Strugała ◽  
...  

The surface treatment of titanium implants has been applied mainly to increase surface bioactivity and, more recently, to introduce antibacterial properties. To this end, composite coatings have been investigated, particularly those based on hydroxyapatite. The present research was aimed at the development of another coating type, chitosan–nanosilver, deposited on a Ti13Zr13Nb alloy. The research comprised characterization of the coating’s microstructure and morphology, time-dependent nanosilver dissolution in simulated body fluid, and investigation of the nanomechanical properties of surface coatings composed of chitosan and nanosilver, with or without a surface-active substance, deposited at different voltages for 1 min on a nanotubular TiO2 layer. The microstructure, morphology, topography, and phase composition were examined, and the silver dissolution rate in simulated body fluid, nanoscale mechanical properties, and water contact angle were measured. The voltage value significantly influenced surface roughness. All specimens possessed high biocompatibility. The highest and best adhesion of the coatings was observed in the absence of a surface-active substance. Silver dissolution caused the appearance of silver ions in solution at levels effective against bacteria and below the upper safe limit value.

MRS Advances ◽  
2018 ◽  
Vol 3 (30) ◽  
pp. 1703-1709
Author(s):  
Xuefei Zhang ◽  
Yuan Zhang ◽  
Matthew Z. Yates

ABSTRACTHydroxyapatite (HA)/nanotubular titanium dioxide (TiO2) composite coatings loaded with antibiotics were developed to combine biocompatibility and antibacterial property. TiO2 nanotubes were first fabricated on Ti plates using anodization techniques. Then HA nanocrystals were synthesized on the TiO2 nanotubes by electrochemical deposition, followed by loading of a model drug compound, streptomycin. The streptomycin release profile of the composite coating was investigated. Bacterial tests demonstrate that the streptomycin-loaded composite coatings were highly effective in inhibiting bacterial growth. Simulated body fluid (SBF) experiments indicated that the composite coatings possessed good osseointegration capability.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 667
Author(s):  
Zexin Wang ◽  
Fei Ye ◽  
Liangyu Chen ◽  
Weigang Lv ◽  
Zhengyi Zhang ◽  
...  

In this work, ZK60 magnesium alloy was employed as a substrate material to produce ceramic coatings, containing Ca and P, by micro-arc oxidation (MAO). Atmospheric plasma spraying (APS) was used to prepare the hydroxyapatite layer (HA) on the MAO coating to obtain a composite coating for better biological activity. The coatings were examined by various means including an X-ray diffractometer, a scanning electron microscope and an energy spectrometer. Meanwhile, an electrochemical examination, immersion test and tensile test were used to evaluate the in vitro performance of the composite coatings. The results showed that the composite coating has a better corrosion resistance. In addition, this work proposed a degradation model of the composite coating in the simulated body fluid immersion test. This model explains the degradation process of the MAO/APS coating in SBF.


2017 ◽  
Vol 5 (2) ◽  
pp. 177-194 ◽  
Author(s):  
T. V. Timchenko ◽  
A. V. Blinov ◽  
A. V. Serov ◽  
L. I. Shcherbakova ◽  
V. A. Kompantsev ◽  
...  

1956 ◽  
Vol 39 (6) ◽  
pp. 963-976 ◽  
Author(s):  
W. J. V. Osterhout

The behavior of the cell depends to a large extent on the permeability of the outer non-aqueous surface layer of the protoplasm. This layer is immiscible with water but may be quite permeable to it. It seems possible that a reversible increase or decrease in permeability may be due to a corresponding increase or decrease in the water content of the non-aqueous surface layer. Irreversible increase in permeability need not be due primarily to increase in the water content of the surface layer but may be caused chiefly by changes in the protoplasm on which the surface layer rests. It may include desiccation, precipitation, and other alterations. An artificial cell is described in which the outer protoplasmic surface layer is represented by a layer of guaiacol on one side of which is a solution of KOH + KCl representing the external medium and on the other side is a solution of CO2 representing the protoplasm. The K+ unites with guaiacol and diffuses across to the artificial protoplasm where its concentration becomes higher than in the external solution. The guaiacol molecule thus acts as a carrier molecule which transports K+ from the external medium across the protoplasmic surface. The outer part of the protoplasm may contain relatively few potassium ions so that the outwardly directed potential at the outer protoplasmic surface may be small but the inner part of the protoplasm may contain more potassium ions. This may happen when potassium enters in combination with carrier molecules which do not completely dissociate until they reach the vacuole. Injury and recovery from injury may be studied by measuring the movements of water into and out of the cell. Metabolism by producing CO2 and other acids may lower the pH and cause local shrinkage of the protoplasm which may lead to protoplasmic motion. Antagonism between Na+ and Ca++ appears to be due to the fact that in solutions of NaCl the surface layer takes up an excessive amount of water and this may be prevented by the addition of suitable amounts of CaCl2. In Nitella the outer non-aqueous surface layer may be rendered irreversibly permeable by sharply bending the cell without permanent damage to the inner non-aqueous surface layer surrounding the vacuole. The formation of contractile vacuoles may be imitated in non-living systems. An extract of the sperm of the marine worm Nereis which contains a highly surface-active substance can cause the egg to divide. It seems possible that this substance may affect the surface layer of the egg and cause it to take up water. A surface-active substance has been found in all the seminal fluids examined including those of trout, rooster, bull, and man. Duponol which is highly surface-active causes the protoplasm of Spirogyra to take up water and finally dissolve but it can be restored to the gel state by treatment with Lugol solution (KI + I). The transition from gel to sol and back again can be repeated many times in succession. The behavior of water in the surface layer of the protoplasm presents important problems which deserve careful examination.


2015 ◽  
Vol 1119 ◽  
pp. 438-443
Author(s):  
Claudiu Constantin Manole ◽  
Ioana Demetrescu

Small Intestinal Submucosa (SIS) is a material used from ancient times in foods, and more recently as a biomaterial. To ensure antibacterial properties, the presence of ionic Ag+is benefic and brings a minimum of toxicity to the SIS. In this paper, the electrochemical oxidation of Ag is considered to obtain the ionic Ag+. The simultaneous use of Surface Plasmon Resonance (SPR) and Electrochemical techniques opens an insight on Ag oxidation. The study is undertaken in a Simulated Body Fluid (SBF) with ions concentration that closely resembles the concentrations of the human blood plasma for a simulation of the Ag+ions behavior in physiological conditions. The simultaneous SPR and Electrochemical approach highlighted aspects of the ion adsorption into the SIS membrane.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 231
Author(s):  
Farzad Soleymani ◽  
Rahmatollah Emadi ◽  
Sorour Sadeghzade ◽  
Fariborz Tavangarian

Polymer–ceramic composite coatings on magnesium-based alloys have attracted lots of attention in recent years, to control the speed of degradability and to enhance bioactivity and biocompatibility. In this study, to decrease the corrosion rate in a simulated body fluid (SBF) solution for long periods, to control degradability, and to enhance bioactivity, polycaprolactone–chitosan composite coatings with different percentages of baghdadite (0 wt.%, 3 wt.%, and 5 wt.%) were applied to an anodized AZ91 alloy. According to the results of the immersion test of the composite coating containing 3 wt.% baghdadite in a phosphate buffer solution (PBS), the corrosion rate decreased from 0.45 (for the AZ91 sample) to 0.11 mg/cm2·h after seven days of immersion. To evaluate the apatite formation capability of specimens, samples were immersed in an SBF solution. The results showed that the samples were bioactive as apatite layers formed on the surface of specimens. The composite coating containing 3 wt.% baghdadite showed the highest apatite-formation capability, with a controlled release of ions, and the lowest corrosion rate in the SBF.


Sign in / Sign up

Export Citation Format

Share Document