scholarly journals Highly Hydrophobic and Self-Cleaning Heat-Treated Larix spp. Prepared by TiO2 and ZnO Particles onto Wood Surface

Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 986
Author(s):  
Dong Xing ◽  
Yan Zhang ◽  
Jianpeng Hu ◽  
Lihong Yao

The deposition of TiO2/ZnO on heat-treated wood was prepared by a hydrothermal reaction and sol-gel method. Highly hydrophobic wood was successfully prepared with low surface free energy. The surface-modified wood samples were characterized by 3D-laser shape measurement microscopy, scanning electron microscopy, energy-dispersive spectroscopy, and Fourier transform infrared spectroscopy for the microstructure and chemical composition investigation. The deposited TiO2 or ZnO markedly made the wood surface brighter, which was demonstrated by visual observation and spectrophotometer. The TiO2/ZnO particles were successfully loaded onto the surface of the wood, proven by SEM-EDS and FTIR analyses. The contact angle of TiO2 and ZnO-modified wood reached 123.9° and 134.1° respectively, which is obviously higher than that of the control at 88.9°. The hydrophobic properties of the TiO2/ZnO modified wood samples were directly related to the shapes of clusters and spheres of particles, which increased the roughness of the wood surface. This study shows the hydrophobic properties of the TiO2/ZnO-modified wood and provides the color and roughness changes for the painting process of heat-treated wood.

BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 747-763
Author(s):  
Xiaoling Liu ◽  
Songwu Chen ◽  
Yunlin Fu

Modification of Pinus yunnanensis using SiO2–TiO2 was carried out via the sol–gel method. The aim was to improve the hydrophobicity, aging resistance, and photocatalysis of the wood surface via the formation of new chemical bonds with penetrated SiO2 and TiO2. The air-dried P. yunnanensis wood underwent penetration, gelation, aging, and drying. The wood was exposed to high temperatures for modification, and its microstructure, composition, photodegradability, resistance to aging, dimensional stability, and hydrophobicity were then determined. The results indicated that during modification, SiO2–TiO2 gel was generated in the wood, and the content of the gel increased as penetration time was extended. No structural change in the wood was observed. Meanwhile, chemical bonds were formed among SiO2, TiO2, and wood. The contact angle of the modified wood increased noticeably relative to that of unmodified wood. This increase indicated a noticeable increase in the hydrophobicity of the wood surface. The modified wood exhibited high photocatalytic degradation; however, its durability was not evident. The water absorption and thickness swelling of the modified wood markedly increased. After ultraviolet-aging resistance testing, the color change in the surface of the modified wood was noticeably less than that of the unmodified wood.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 1112 ◽  
Author(s):  
A. R. Shaikhutdinova ◽  
R. R. Safin ◽  
F. V. Nazipova ◽  
S. R. Mukhametzyanov

This paper proposes the use of an array of heat-treated wood of various species to make parametric furniture for the purpose of operation in the exterior, and on objects in conditions of high humidity. The dependence of change in the color range of thermowoods depending on the temperature and duration of treatment is presented. Experiments were carried out to study the biological stability of thermally modified wood treated by various technologies including: vacuum-convective thermal modification in superheated steam, convective thermal modification in high-pressure saturated steam, as well as in hydrophobic liquids, in flue gas and vacuum-conductive thermal-modifying. The degree of resistance of wood was determined, which allows to conclude that the mass losses of heat-treated specimens caused by the destructive action of fungi are significantly lower compared to untreated ones. The researchwas conducted to determine the numerical characteristics of microroughness of the polished surface of wood, thermally modified at different temperatures.   


Author(s):  
Tianyi Zhan ◽  
Zhiting Liu ◽  
Hui Peng ◽  
Jiali Jiang ◽  
Yaoli Zhang ◽  
...  

Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lukas Emmerich ◽  
Maja Bleckmann ◽  
Sarah Strohbusch ◽  
Christian Brischke ◽  
Susanne Bollmus ◽  
...  

Abstract Chemical wood modification has been used to modify wood and improve its decay resistance. However, the mode of protective action is still not fully understood. Occasionally, outdoor products made from chemically modified timber (CMT) show internal decay while their outer shell remains intact. Hence, it was hypothesized that wood decay fungi may grow through CMT without losing their capability to degrade non-modified wood. This study aimed at developing a laboratory test set-up to investigate (1) whether decay fungi grow through CMT and (2) retain their ability to degrade non-modified wood. Acetylated and 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) treated wood were used in decay tests with modified ‘mantle specimens’ and untreated ‘core dowels’. It became evident that white rot (Trametes versicolor), brown rot (Coniophora puteana) and soft rot fungi can grow through CMT without losing their ability to degrade untreated wood. Consequently, full volume impregnation of wood with the modifying agent is required to achieve complete protection of wooden products. In decay tests with DMDHEU treated specimens, significant amounts of apparently non-fixated DMDHEU were translocated from modified mantle specimens to untreated wood cores. A diffusion-driven transport of nitrogen and DMDHEU seemed to be responsible for mass translocation during decay testing.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 968
Author(s):  
Dong Xing ◽  
Xinzhou Wang ◽  
Siqun Wang

In this paper, Berkovich depth-sensing indentation has been used to study the effects of the temperature-dependent quasi-static mechanical properties and creep deformation of heat-treated wood at temperatures from 20 °C to 180 °C. The characteristics of the load–depth curve, creep strain rate, creep compliance, and creep stress exponent of heat-treated wood are evaluated. The results showed that high temperature heat treatment improved the hardness of wood cell walls and reduced the creep rate of wood cell walls. This is mainly due to the improvement of the crystallinity of the cellulose, and the recondensation and crosslinking reaction of the lignocellulose structure. The Burgers model is well fitted to study the creep behavior of heat-treated wood cell walls under different temperatures.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 193
Author(s):  
Silvia Soreto Teixeira ◽  
Manuel P. F. Graça ◽  
José Lucas ◽  
Manuel Almeida Valente ◽  
Paula I. P. Soares ◽  
...  

The physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, by using powder coconut water as a mediated reaction medium. The dried powders were heat-treated (HT) at temperatures between 400 and 1000 °C, and their structure, morphology, electrical and magnetic characteristics, cytotoxicity, and magnetic hyperthermia assays were performed. The heat treatment of the LiFe5O8 powder tunes the crystallite sizes between 50 nm and 200 nm. When increasing the temperature of the HT, secondary phases start to form. The dielectric analysis revealed, at 300 K and 10 kHz, an increase of ε′ (≈10 up to ≈14) with a tanδ almost constant (≈0.3) with the increase of the HT temperature. The cytotoxicity results reveal, for concentrations below 2.5 mg/mL, that all samples have a non-cytotoxicity property. The sample heat-treated at 1000 °C, which revealed hysteresis and magnetic saturation of 73 emu g−1 at 300 K, showed a heating profile adequate for magnetic hyperthermia applications, showing the potential for biomedical applications.


2006 ◽  
Vol 317-318 ◽  
pp. 807-810 ◽  
Author(s):  
Chang Yeoul Kim ◽  
Jin Wook Choi ◽  
Tae Yeoung Lim ◽  
Duck Kyun Choi

Electrochromic WO3 thin film was prepared by using tungsten metal solution in hydrogen peroxide as a starting solution and by sol-gel dip coating method. XRD pattern showed that tungsten oxide crystal phase formed at 400. In the view of electrochemical property, WO3 thin film which was heat-treated at 300 and was amorphous had better than that of the crystalline phase.


2007 ◽  
Vol 66 (3) ◽  
pp. 173-180 ◽  
Author(s):  
Milan Sernek ◽  
Michiel Boonstra ◽  
Antonio Pizzi ◽  
Aurelien Despres ◽  
Philippe Gérardin

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5574-5585
Author(s):  
Intan Fajar Suri ◽  
Jong Ho Kim ◽  
Byantara Darsan Purusatama ◽  
Go Un Yang ◽  
Denni Prasetia ◽  
...  

Color changes were tested and compared for heat-treated Paulownia tomentosa and Pinus koraiensis wood treated with hot oil or hot air for further utilization of these species. Hot oil and hot air treatments were conducted at 180, 200, and 220 °C for 1, 2, and 3 h. Heat-treated wood color changes were determined using the CIE-Lab color system. Weight changes of the wood before and after heat treatment were also determined. The weight of the oil heat-treated wood increased considerably but it decreased in air heat-treated wood. The oil heat-treated samples showed a greater decrease in lightness (L*) than air heat-treated samples. A significant change in L* was observed in Paulownia tomentosa. The red/green chromaticity (a*) of both wood samples increased at 180 and 200 °C and slightly decreased at 220 °C. The yellow/blue chromaticity (b*) in both wood samples increased at 180 °C, but it rapidly decreased with increasing treatment durations at 200 and 220 °C. The overall color change (ΔE*) in both heat treatments increased with increasing temperature, being higher in Paulownia tomentosa than in Pinus koraiensis. In conclusion, oil heat treatment reduced treatment duration and was a more effective method than air heat treatment in improving wood color.


Sign in / Sign up

Export Citation Format

Share Document