scholarly journals Structural, Magnetic and Gas Sensing Activity of Pure and Cr Doped In2O3 Thin Films Grown by Pulsed Laser Deposition

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 588
Author(s):  
Kamatam Hari Prasad ◽  
Karuppiah Deva Arun Kumar ◽  
Paolo Mele ◽  
Arulanandam Jegatha Christy ◽  
Kugalur Venkidusamy Gunavathy ◽  
...  

Pure In2O3 and 6% Cr-doped In2O3 thin films were prepared on a silicon (Si) substrate by pulsed laser deposition technique. The obtained In2O3/In2O3:Cr thin films structural, morphological, optical, magnetic and gas sensing properties were briefly investigated. The X-ray diffraction results confirmed that the grown thin films are in single-phase cubic bixbyte structure with space group Ia-3. The SEM analysis showed the formation of agglomerated spherical shape morphology with the decreased average grain size for Cr doped In2O3thin film compared to pure In2O3film. It is observed that the Cr doped In2O3thin film shows the lower band gap energy and that the corresponding transmittance is around 80%. The X-ray photoelectron spectroscopy measurements revealed that the presence of oxygen vacancy in the doped In2O3film. These oxygen defects could play a significant role to enhance the sensing performance towards chemical species. In the magnetic hysteresis loop, it is clear that the prepared films confirm the ferromagnetic behaviour and the maximum saturation value of 39 emu/cc for Cr doped In2O3 film. NH3 gas sensing studies was also carried out at room temperature for both pure and Cr doped In2O3films, and the obtained higher sensitivity is 182% for Cr doped In2O3, which is about nine times higher than for the pure In2O3 film due to the presence of defects on the doped film surface.

2010 ◽  
Vol 123-125 ◽  
pp. 375-378 ◽  
Author(s):  
Ram Prakash ◽  
Shalendra Kumar ◽  
Chan Gyu Lee ◽  
S.K. Sharma ◽  
Marcelo Knobel ◽  
...  

Ce1-xFexO2 (x=0, 0.01, 0.03 and 0.0 5) thin films were grown by pulsed laser deposition technique on Si and LaAlO3 (LAO) substrates. These films were deposited in vacuum and 200 mTorr oxygen partial pressure for both the substrates. These films were characterized by x-ray diffraction XRD and Raman spectroscopy measurements. XRD results reveal that these films are single phase. Raman results show F2g mode at ~466 cm-1 and defect peak at 489 cm-1 for film that deposited on LAO substrates, full width at half maximum (FWHM) is increasing with Fe doping for films deposited on both the substrates.


1992 ◽  
Vol 7 (10) ◽  
pp. 2639-2642 ◽  
Author(s):  
R.K. Singh ◽  
Deepika Bhattacharya ◽  
S. Sharan ◽  
P. Tiwari ◽  
J. Narayan

We have fabricated Ni3Al and NiAl thin films on different substrates by the pulsed laser deposition (PLD) technique. A high energy nanosecond laser beam was directed onto Ni–Al (NiAl, Ni3Al) targets, and the evaporated material was deposited onto substrates placed parallel to the target. The substrate temperature was varied between 300 and 400 °C, and the substrate-target distance was maintained at approximately 5 cm. The films were analyzed using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and Rutherford backscattering spectrometry. At energy densities slightly above the evaporation threshold, a slight enrichment of Al was observed, while at higher energy densities the film stoichiometry was close (<5%) to the target composition. Barring a few particles, the surface of the films exhibited a smooth morphology. X-ray and TEM results corroborated the formation of Ni3Al and NiAl films from similar target compositions. These films were characterized by small randomly oriented grains with grain size varying between 200 and 400 Å.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 533-535
Author(s):  
J. H. HAO ◽  
J. GAO

We have developed a process to grow SrTiO 3 ( STO ) thin films showing single (110) orientation directly on Si by means of pulsed laser deposition technique. The growth of STO films directly on Si has been described. The crystallinity of the grown STO films was characterized by X-ray diffraction analysis of θ-2θ scan and rocking curve. Our results may be of interest for better understanding of the growth based on the perovskite oxide thin films on silicon materials.


2012 ◽  
Vol 1432 ◽  
Author(s):  
M. Baseer Haider ◽  
M. F. Al-Kuhaili ◽  
S. M. A. Durrani ◽  
Imran Bakhtiari

Abstract:Gallium nitride thin films were grown by pulsed laser deposition. Subsequently, post-growth annealing of the samples was performed at 400, and 600 oC in the nitrogen atmosphere. Surface morphology of the as-grown and annealed samples was performed by atomic force microscopy, surface roughness of the films improved after annealing. Chemical analysis of the samples was performed using x-ray photon spectroscopy, stoichiometric Gallium nitride thin films were obtained for the samples annealed at 600 oC. Optical measurements of the samples were performed to investigate the effect of annealing on the band gap and optical constants the films.


2014 ◽  
Vol 936 ◽  
pp. 282-286
Author(s):  
Ying Wen Duan

Single-crystalline, epitaxial LaFeO3 films with 5 at. % substitution of Pd on the Fe site are grown on (100) SrTiO3 substrate by pulsed-laser deposition technique. The epitaxial orientation relationships are (110)[001]LFPO||(100)[001]STO. X-ray diffraction and transmission electron microscopy reveal that the LFPO films have high structural quality and an atomically sharp LFPO/STO interface. After reduction treatments of as-grown LFPO films, very little Pd escaped the LFPO lattice onto the film surface, the formed Pd (100) particles are oriented epitaxially, and parallel to the LFPO films surface.


2008 ◽  
Vol 8 (8) ◽  
pp. 4135-4140 ◽  
Author(s):  
Lakshmikanta Aditya ◽  
A. Srivastava ◽  
S. K. Sahoo ◽  
P. Das ◽  
C. Mukherjee ◽  
...  

Cobalt ferrite thin films have been deposited on fused quartz substrates by pulsed laser deposition at various substrate temperatures, TS (25 °C, 300 °C, 550 °C and 750 °C). Single phase, nanocrystalline, spinel cobalt ferrite formation is confirmed by X-ray diffraction (XRD) for TS ≥ 300 °C. Conventional XRD studies reveal strong (111) texturing in the as deposited films with TS ≥ 550 °C. Bulk texture measurements using X-ray orientation distribution function confirmed (111) preferred orientation in the films with TS ≥ 550 °C. Grain size (13–16 nm for TS ≥ 300 °C) estimation using grazing incidence X-ray line broadening analysis shows insignificant grain growth with increasing TS, which is in good agreement with grain size data obtained from transmission electron microscopy.


2011 ◽  
Vol 1292 ◽  
Author(s):  
Nobuyuki Iwata ◽  
Mark Huijben ◽  
Guus Rijnders ◽  
Hiroshi Yamamoto ◽  
Dave H. A. Blank

ABSTRACTThe CaFeOX(CFO) and LaFeO3(LFO) thin films as well as superlattices were fabricated on SrTiO3(100) substrates by pulsed laser deposition (PLD) method. The tetragonal LFO film grew with layer-by-layer growth mode until approximately 40 layers. In the case of CFO, initial three layers showed layer-by-layer growth, and afterward the growth mode was transferred to two layers-by-two layers (TLTL) growth mode. The RHEED oscillation was observed until the end of the growth, approximately 50nm. Orthorhombic twin CaFeO2.5 (CFO2.5) structure was obtained. However, it is expected that the initial three CFO layers are CaFeO3 (CFO3) with the valence of Fe4+. The CFO and LFO superlattice showed a step-terraces surface, and the superlattice satellite peaks in a 2θ-θ and reciprocal space mapping (RSM) x-ray diffraction (XRD) measurements, indicating that the clear interfaces were fabricated.


2018 ◽  
Vol 9 ◽  
pp. 686-692 ◽  
Author(s):  
Daiki Katsube ◽  
Hayato Yamashita ◽  
Satoshi Abo ◽  
Masayuki Abe

We have designed and developed a combined system of pulsed laser deposition (PLD) and non-contact atomic force microscopy (NC-AFM) for observations of insulator metal oxide surfaces. With this system, the long-period iterations of sputtering and annealing used in conventional methods for preparing a metal oxide film surface are not required. The performance of the combined system is demonstrated for the preparation and high-resolution NC-AFM imaging of atomically flat thin films of anatase TiO2(001) and LaAlO3(100).


Sign in / Sign up

Export Citation Format

Share Document