scholarly journals Tribo-Behavior and Corrosion Properties of Welded 304L and 316L Stainless Steel

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1567
Author(s):  
Hany S. Abdo ◽  
Asiful H. Seikh ◽  
Hamad F. Alharbi ◽  
Jabair Ali Mohammed ◽  
Mahmoud S. Soliman ◽  
...  

The present study investigates the electrochemical corrosion response and tribo-behavior of 304L and 316L stainless steel welded by gas metal arc welding (GMAW), which offered a high deposition rate. During this research, the metallurgically prepared welded samples were subjected to a tribological test and a corrosion test. The wear results were favorable for 316L steel, and it showed a lower coefficient of friction than the 304L specimen. These samples also underwent characterization studies, such as X-ray diffractometry (XRD) and scanning electron microscopy (SEM), to identify the different phases obtained on the cooling of the weld pool. Finally, both specimens were compared against their mechanical properties. Owing to the above properties, the 316L sample showed lasting durability, as compared to the 304L steel. The primary compositional difference is the higher presence of molybdenum and chromium in the 316L steel, compared to the 304L stainless steel.

2008 ◽  
Vol 1107 ◽  
Author(s):  
Gloria Kwong ◽  
Anatolie Carcea ◽  
Roger C. Newman

AbstractAn aging assessment of the OPG waste resin storage system predicted the potential for premature failure of the carbon steel resin liners. Consequently, resin liners made of 316L stainless steel with a minimum content of 2.5% molybdenum were selected to replace the carbon steel liners. The 2.5% Mo 316L stainless steel was specified to enhance pitting resistance in the spent resin environment. With the additional Mo, one would expect that a brief electrochemical corrosion test will reveal the superiority of such alloy over conventional 316L steel. This study reports a contrary experience


2021 ◽  
Vol 1 (1) ◽  
pp. 88-96
Author(s):  
Nur Izan Syahriah Hussein ◽  
Nur Aisyah Nabilah Mohd Jmmani ◽  
Mohamad Nizam Ayof‬ ◽  
Toibah Abd Rahim ◽  
Muhammad Zaimi Zainal Abidin ◽  
...  

This research focuses on the capabilities of coldArc GMAW in the behavior of heat input to the weld bead dimension. In this study, the effect of process GMAW of 308L stainless steel filler wire with a thickness of 1.2 mm and 304L stainless steel base plate, with a dimension of 120 mm x 25 mm x 10 mm (height x width x thickness) by applying WAAM. The data was collected using MATLAB of a Smart Weld Rosenthal’s Steady-State 3D Isotherms. A Taguchi response was used in the DOE method with Minitab software to analyze the effect of process parameters on height, width, and depth of weld bead dimension during GMAW. The experiments were conducted following the low, mid, and high input parameters will show the different structures of weld bead dimension, which include 70 A, 75 A, and 78 A (arc current), 15 V, 16 V, and 17 V (voltage), 400 mm/min, 600 mm/min, and 800 mm/min (welding speed). Hence, the optimum value is 75 A, 16 V, and 800 mm/min, and the most significant parameters to deposit stainless steel with coldArc GMAW were welding speed followed by arc current and voltage.


2014 ◽  
Vol 8 (3) ◽  
pp. 156-159 ◽  
Author(s):  
Magdalena Łępicka ◽  
Małgorzata Grądzka-Dahlke

Abstract Martensitic stainless steels are used in a large number of various industrial applications, e.g. molds for plastic injections and glass moldings, automotive components, cutting tools, surgical and dental instruments. The improvement of their tribological and corrosion properties is a problem of high interest especially in medical applications, where patient safety becomes a priority. The paper covers findings from plasma nitrided AISI 440B (PN-EN or DIN X90CrMoV18) stainless steel corrosion resistance studies. Conventionally heat treated and plasma nitrided in N2:H2 reaction gas mixture (50:50, 65:35 and 80:20, respectively) in two different temperature ranges (380 or 450°C) specimens groups were examined. Microscopic observations and electrochemical corrosion tests were performed using a variety of analytical techniques. As obtained findings show, plasma nitriding of AISI 440B stainless steel, regardless of the process temperature, results in reduction of corrosion current density. Nevertheless, applying thermo-chemical process which requires exceeding temperature of about 400°C is not recommended due to increased risk of steel sensitization to intergranular and stress corrosion. According to the results, material ion nitrided in 450°C underwent leaching corrosion processes, which led to significant disproportion in chemical composition of the corroded and corrosion-free areas. The authors suggest further research into corrosion process of plasma nitrided materials and its degradation products.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6790
Author(s):  
Viera Zatkalíková ◽  
Juraj Halanda ◽  
Dušan Vaňa ◽  
Milan Uhríčik ◽  
Lenka Markovičová ◽  
...  

Plasma immersion ion implantation (PIII) of nitrogen is low-temperature surface technology which enables the improvement of tribological properties without a deterioration of the corrosion behavior of austenitic stainless steels. In this paper the corrosion properties of PIII-treated AISI 316L stainless steel surfaces are evaluated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PP) and exposure immersion tests (all carried out in the 0.9 wt. % NaCl solution at 37 ± 0.5 °C) and compared with a non-treated surface. Results of the three performed independent corrosion tests consistently confirmed a significant increase in the corrosion resistance after two doses of PIII nitriding.


2022 ◽  
Vol 60 (1) ◽  
pp. 46-52
Author(s):  
Young Woo Seo ◽  
Chan Yang Kim ◽  
Bo Kyung Seo ◽  
Won Sub Chung

This study evaluated changes in delta-ferrite content depending on the preheating of AISI 316L stainless steel. We also determined the reasons for the variation in delta-ferrite content, which affects corrosion resistance. Changes in delta-ferrite content after preheating was confirmed using a Feritscope, and the microstructure was analyzed using optical microscopy (OM). We found that the delta-ferrite microstructure size decreased when preheating time was increased at 1295 oC, and that the delta-ferrite content could be controlled through preheating. Potentiodynamic polarization test were carried out in NaCl (0.5 M) + H2SO4 (0.5 M) solution, and it was found that higher delta-ferrite content resulted in less corrosion potential and passive potential. To determine the cause, an analysis was conducted using energy-dispersive spectroscopy (EDS), which confirmed that higher delta-ferrite content led to weaker corrosion resistance, due to Cr degradation at the delta-ferrite and austenite boundaries. The degradation of Cr on the boundaries between austenite and delta-ferrite can be explained by the difference in the diffusion coefficient of Cr in the ferrite and austenite. A scanning electron microscopy (SEM) analysis of material used for actual semiconductor piping confirmed that corrosion begins at the delta-ferrite and austenite boundaries. These results confirm the need to control delta-ferrite content in AISI 316L stainless steel used for semiconductor piping.


Sign in / Sign up

Export Citation Format

Share Document