scholarly journals Coefficient-of-Determination Fourier Transform

Computation ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 61
Author(s):  
Matthew Marko

This algorithm is designed to perform numerical transforms to convert data from the temporal domain into the spectral domain. This algorithm obtains the spectral magnitude and phase by studying the Coefficient of Determination of a series of artificial sinusoidal functions with the temporal data, and normalizing the variance data into a high-resolution spectral representation of the time-domain data with a finite sampling rate. What is especially beneficial about this algorithm is that it can produce spectral data at any user-defined resolution, and this highly resolved spectral data can be transformed back to the temporal domain.


Author(s):  
Matthew Marko

This algorithm is designed to perform Discrete Fourier Transforms (DFT) to convert temporal data into spectral data. This algorithm obtains the Fourier Transforms by studying the Coefficient of Determination of a series of artificial sinusoidal functions with the temporal data, and normalizing the variance data into a high-resolution spectral representation of the time-domain data with a finite sampling rate. What is especially beneficial about this DFT algorithm is that it can produce spectral data at any user-defined resolution.



2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.



1993 ◽  
Vol 58 (1) ◽  
pp. 173-190 ◽  
Author(s):  
Eva Klinotová ◽  
Jiří Klinot ◽  
Václav Křeček ◽  
Miloš Buděšínský ◽  
Bohumil Máca

Reaction of 3β-acetoxy-21,22-dioxo-18α,19βH-ursan-28,20β-olide (IIIa) and 20β,28-epoxy-21,22-dioxo-19α,19βH-ursan-3β-yl acetate (IIIb) with diazomethane afforded derivatives XII-XIV with spiroepoxide group in position 21 or 22, which were further converted into hydroxy derivatives XV and XVII. Ethylene ketals VIII-X were also prepared. In connection with the determination of position and configuration of the functional groups at C(21) and C(22), the 1H and 13C NMR spectral data of the prepared compounds are discussed. Complete analysis of two four-spin systems in the 1H NMR spectrum of bisethylenedioxy derivative Xb led to the proton-proton coupling constants from which the structure with two 1,4-dioxane rings condensed with ring E, and their conformation, was derived.



2021 ◽  
Vol 13 (7) ◽  
pp. 3727
Author(s):  
Fatema Rahimi ◽  
Abolghasem Sadeghi-Niaraki ◽  
Mostafa Ghodousi ◽  
Soo-Mi Choi

During dangerous circumstances, knowledge about population distribution is essential for urban infrastructure architecture, policy-making, and urban planning with the best Spatial-temporal resolution. The spatial-temporal modeling of the population distribution of the case study was investigated in the present study. In this regard, the number of generated trips and absorbed trips using the taxis pick-up and drop-off location data was calculated first, and the census population was then allocated to each neighborhood. Finally, the Spatial-temporal distribution of the population was calculated using the developed model. In order to evaluate the model, a regression analysis between the census population and the predicted population for the time period between 21:00 to 23:00 was used. Based on the calculation of the number of generated and the absorbed trips, it showed a different spatial distribution for different hours in one day. The spatial pattern of the population distribution during the day was different from the population distribution during the night. The coefficient of determination of the regression analysis for the model (R2) was 0.9998, and the mean squared error was 10.78. The regression analysis showed that the model works well for the nighttime population at the neighborhood level, so the proposed model will be suitable for the day time population.



2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yongxia Guo ◽  
Guangsheng Wei ◽  
Ruoxia Yao

Abstract In this paper, we are concerned with the inverse spectral problems for differential pencils defined on $[0,\pi ]$ [ 0 , π ] with an interior discontinuity. We prove that two potential functions are determined uniquely by one spectrum and a set of values of eigenfunctions at some interior point $b\in (0,\pi )$ b ∈ ( 0 , π ) in the situation of $b=\pi /2$ b = π / 2 and $b\neq \pi /2$ b ≠ π / 2 . For the latter, we need the knowledge of a part of the second spectrum.



Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 592
Author(s):  
Mehdi Aalijahan ◽  
Azra Khosravichenar

The spatial distribution of precipitation is one of the most important climatic variables used in geographic and environmental studies. However, when there is a lack of full coverage of meteorological stations, precipitation estimations are necessary to interpolate precipitation for larger areas. The purpose of this research was to find the best interpolation method for precipitation mapping in the partly densely populated Khorasan Razavi province of northeastern Iran. To achieve this, we compared five methods by applying average precipitation data from 97 rain gauge stations in that province for a period of 20 years (1994–2014): Inverse Distance Weighting, Radial Basis Functions (Completely Regularized Spline, Spline with Tension, Multiquadric, Inverse Multiquadric, Thin Plate Spline), Kriging (Simple, Ordinary, Universal), Co-Kriging (Simple, Ordinary, Universal) with an auxiliary elevation parameter, and non-linear Regression. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the Coefficient of Determination (R2) were used to determine the best-performing method of precipitation interpolation. Our study shows that Ordinary Co-Kriging with an auxiliary elevation parameter was the best method for determining the distribution of annual precipitation for this region, showing the highest coefficient of determination of 0.46% between estimated and observed values. Therefore, the application of this method of precipitation mapping would form a mandatory base for regional planning and policy making in the arid to semi-arid Khorasan Razavi province during the future.



Analysis ◽  
2020 ◽  
Vol 40 (1) ◽  
pp. 39-45
Author(s):  
Yasser Khalili ◽  
Dumitru Baleanu

AbstractIn the present work, the interior spectral data is used to investigate the inverse problem for a diffusion operator with an impulse on the half line. We show that the potential functions {q_{0}(x)} and {q_{1}(x)} can be uniquely established by taking a set of values of the eigenfunctions at some internal point and one spectrum.



Batteries ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Erik Goldammer ◽  
Julia Kowal

The distribution of relaxation times (DRT) analysis of impedance spectra is a proven method to determine the number of occurring polarization processes in lithium-ion batteries (LIBs), their polarization contributions and characteristic time constants. Direct measurement of a spectrum by means of electrochemical impedance spectroscopy (EIS), however, suffers from a high expenditure of time for low-frequency impedances and a lack of general availability in most online applications. In this study, a method is presented to derive the DRT by evaluating the relaxation voltage after a current pulse. The method was experimentally validated using both EIS and the proposed pulse evaluation to determine the DRT of automotive pouch-cells and an aging study was carried out. The DRT derived from time domain data provided improved resolution of processes with large time constants and therefore enabled changes in low-frequency impedance and the correlated degradation mechanisms to be identified. One of the polarization contributions identified could be determined as an indicator for the potential risk of plating. The novel, general approach for batteries was tested with a sampling rate of 10 Hz and only requires relaxation periods. Therefore, the method is applicable in battery management systems and contributes to improving the reliability and safety of LIBs.



Author(s):  
Süheyla Özbey ◽  
Nilgün Karalı ◽  
Aysel Gürsoy

AbstractIn this study 4-(3-coumarinyl)-3-benzyl-4-thi azolin-2-one 4-methylbenzylidenehydrazone 3 was synthesised. An independent proof of the thiazolylhydrazone structure of 3 was achieved by single crystal X-ray diffraction analysis. Elemental analyses and spectral data (IR,



2013 ◽  
Vol 22 (10) ◽  
pp. 1350073
Author(s):  
OWEN PAVEL FERNÁNDEZ PIEDRA ◽  
JOSE BERNAL CASTILLO ◽  
YULIER JIMENEZ SANTANA ◽  
LEOSDAN FIGUEREDO NORIS

In this paper, we report the results of a detailed investigation of the complete time evolution of massless fermion fields propagating in spacetimes of higher-dimensional stringy black hole solutions, obtained from intersecting branes in string/M theory. We write the Dirac equation in D-dimensional spacetime in a form suitable to perform a numerical integration of it, and using a Prony fitting of the time domain data, we determine the quasinormal frequencies that characterize the test field evolution at intermediary times. We also present the results obtained for the quasinormal frequencies using a sixth-order WKB approximation, that are in perfect agreement with the numerical results. The power-law exponents that describe the field relaxation at very late-times are also determined, and we show that they depends upon the dimensionality of spacetime, and are identical to that associated with the relaxation of boson fields for odd dimensions. The dependence of the frequencies and damping factor of the spinor field with the charges of the stringy black hole are studied.



Sign in / Sign up

Export Citation Format

Share Document