scholarly journals Experimental Study on Unconfined Compression Strength of Polypropylene Fiber Reinforced Composite Cemented Clay

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 247 ◽  
Author(s):  
Qiangqiang Cheng ◽  
Jixiong Zhang ◽  
Nan Zhou ◽  
Yu Guo ◽  
Shining Pan

The effects of three main factors, including polypropylene fiber content, composite cement content and curing time on the unconfined compressive strength of fiber-reinforced cemented clay were studied through a series of unconfined compressive strength tests. The experimental results show that the incorporation of fibers can increase the compressive strength and residual strength of cement-reinforced clay as well as the corresponding axial strain when the stress peak is reached compared with cement-reinforced clay. The compressive strength of fiber-reinforced cement clay decreases first, then increases with small-composite cement at curing time 14 d and 28 d. However, fiber-reinforced cement clay’s strength increases with the increase of fiber content for heavy-composite cement. The compressive strength of fiber-composite cement-reinforced marine clay increases with the increase of curing time and composite cement content. The growth rate increases with the increase of curing time. The failure mode of composite cement-reinforced clay is brittle failure, while the failure mode of fiber-reinforced cemented clay is plastic failure.

2013 ◽  
Vol 438-439 ◽  
pp. 197-201
Author(s):  
Xian Hua Yao ◽  
Peng Li ◽  
Jun Feng Guan

Based on the generalization and analysis of laboratory experimental results on mix ratio, the effects of various factors such as cement content, water-cement ratio, curing time, curing conditions and types of cement on the mechanical properties of unconfined compressive strength of cement soil are presented. Results show that the unconfined compressive strength of cement soil increases with the growing curing time, and it is greatly affected by the cement content, water-cement ratio, cement types and curing time, while the effect of curing conditions is weak with a cement content of more than 10%. Moreover, the stress-strain of the cement soil responds with the cement content and curing time, increasing curing time and cement content makes the cement soil to be harder and brittle, and leads to a larger Young's modulus.


2011 ◽  
Vol 250-253 ◽  
pp. 788-794
Author(s):  
Shu Lin Zhan ◽  
Shu Sen Gao ◽  
Jun Ying Lai

In order to study the influence of modified polypropylene (PP) fiber on the physical and mechanical properties of curing sludge, the same amount of cement and different content of polypropylene fiber were mixed into the sludge. Unconfined compressive strength tests, water content tests and shear strength tests were carried out on different specimens with different curing time. The results show that the sludge curing effect is markedly improved by the addition of the polypropylene fiber. As to the curing sludge with the same curing time, when the content of the polypropylene fiber increases, the unconfined compressive strength and the cohesive strength greatly increase, and the internal frictional angle decreases.


2010 ◽  
Vol 168-170 ◽  
pp. 456-459
Author(s):  
Hai Yan Yuan ◽  
Shui Zhang ◽  
Guo Zhong Li

By adopting the method of orthogonal experimental design, the effect of three independent variables, that is steel fiber fraction, polypropylene fiber fraction and silica fume fraction on the compressive strength, flexural strength and shrinkage of cement mortar was studied. The results indicate that steel fiber is one of the most important factors affecting compressive strength and shrinkage, and polypropylene fiber is one of the most important factors affecting flexural strength and shrinkage of cement mortar. By using deviation analysis to analyze the orthogonal experiment results, the optimized mix proportion of hybrid fiber reinforced cement mortar is determined. The hybrid effect of steel fiber and polypropylene fiber on the properties of cement mortar is discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Zhiguo Cao ◽  
Lian Xiang ◽  
Erxing Peng ◽  
Kai Li

Geotechnical applications based on soil resistivity measurement are becoming more popular in recent years. In order to explore the potential application of the electrical resistivity method in stabilization/solidification of contaminated soils, two kinds of lead-contaminated soils stabilized with cement were prepared, and the electrical resistivity and unconfined compressive strength of specimens after curing for various periods were measured. The test results show that a high lead content leads to a low value of electrical resistivity of cement-stabilized soils, and increasing cement content and curing time result in a significant increase in electrical resistivity. The reduction in porosity and degree of saturation, as a result of the cement hydration process, leads to an increase in electrical resistivity. The ratio of porosity-lead content/cement content-curing time, combining together the effect of lead content, cement content, curing time, and porosity on electrical resistivity of stabilized soils, can be used as a fundamental parameter to assess electrical resistivity of cement-stabilized lead-contaminated soils. Archie’s law can be extended to apply to cement-stabilized lead-contaminated soils by using this ratio, replacing the porosity. The new resistivity formula obtained in this paper is just empirical. There is a power function correlation between unconfined compressive strength and electrical resistivity of lead-contaminated soils stabilized with cement. Electrical resistivity measurement can be used as an economical and time-effective method to assess the quality of cement-stabilized lead-contaminated soils in practice.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Gao ◽  
Guohui Hu ◽  
Nan Xu ◽  
Junyi Fu ◽  
Chao Xiang ◽  
...  

In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35%. When the effect of length is researched, different lengths of basalt fibers with 4 mm, 8 mm, 12 mm, and 15 mm are put into soil at the same content of 0.05%. Experimental results show that basalt fiber can effectively improve the UCS of clay soil. And the best content and length are 0.25% and 12 mm, respectively. The results also show that the basalt fiber reinforced clay soil has the “poststrong” characteristic. About the reinforcement mechanism, the fiber and soil column-net model is proposed in this paper. Based on this model and SEM images, the effect of fiber content and length is related to the change of fiber-soil column and formation of effective fiber-soil net.


2020 ◽  
Vol 12 (1) ◽  
pp. 39-52
Author(s):  
Jair de Jesús Arrieta Baldovino ◽  
Ronaldo Luis dos Santos Izzo

The Guabirotuba Formation is located over the sedimentary basin of the city of Curitiba (Brazil). The gray layer of the Formation extends from 1 to 50 m deep. Although it is the most characteristic layer of the Formation, there are no studies of stabilization of these soils for urban paving purposes inthe city. Thus, this paper presents an experimental study of the stabilization of gray silt soil with Portland cement (PC) using cure times (t) of 7, 14, and 28 days. Cement contents (C) of 3, 5, 7, and 9% in relation to soil dry mass were used. After cure times, unconfined compressive strength (qu) and durability tests were performed using wet/dry cycles (W/D). The results show an increase of quwith increasing cement content, increasing molding density and increasing curing time. In addition, the durability of the mixtures increased when more cement was added. It was found that the values of quare dependent on the semi-empirical porosity/cement ratio (η/Civ). Finally, 5% is the minimum cement content for using the soil in paving purposes.


Geosciences ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 241 ◽  
Author(s):  
Samuel J. Abbey ◽  
Eyo U. Eyo ◽  
Jonathan Oti ◽  
Samuel Y. Amakye ◽  
Samson Ngambi

Clayey soils endure adverse changes in strength and volume due to seasonal changes in moisture content and temperature. It has been well recognised that high cement content has been successfully employed in improving the mechanical properties of clayey soils for geotechnical infrastructural purposes. However, the environmental setbacks regarding the use of high cement content in soil reinforcement have necessitated the need for a greener soil reinforcement technique by incorporating industrial by-product materials and synthetic fibres with a reduced amount of cement content in soil-cement mixtures. Therefore, this study presents an experimental study to investigate the mechanical performance of polypropylene and glass fibre-reinforced cement-clay mixtures blended with ground granulated blast slag (GGBS), lime and micro silica for different mix compositions and curing conditions. The unconfined compressive strength, linear expansion and microstructural analysis of the reinforced soils have been studied. The results show that an increase in polypropylene and glass fibre contents caused an increase in unconfined compressive strength but brought on the reduction of linear expansion of the investigated clay from 7.92% to 0.2% at fibre content up to 0.8% for cement-clay mixture reinforced with 5% Portland cement (PC). The use of 0.4–0.8% polypropylene and glass fibre contents in reinforcing cement-clay mixture at 5% cement content causes an increase in unconfined compressive strength (UCS) values above the minimum UCS target value according to American Society for Testing and Materials (ASTM) 4609 after 7 and 14 days curing at 20 °C to 50 °C temperature. Therefore, this new clean production of fibre-reinforced cement-clay mixture blended with industrial by-product materials has great potential for a wide range of applications in subgrade reinforcement.


2015 ◽  
Vol 1094 ◽  
pp. 261-264
Author(s):  
Chang Zheng Sun ◽  
Ying Dong Lin ◽  
Fan Fan Zhu

Exploring strength curve and the corrosion mechanism of polypropylene fiber reinforced cement in chloride environment by the ultrasonic-rebound method and wet-dry cycle method in the laboratory. And fitting actual strength with rebound value and ultrasonic velocity, the result indicates that compressive strength of polypropylene fiber reinforced cement has a good regression relationship with rebound value and supersonic velocity


Sign in / Sign up

Export Citation Format

Share Document