scholarly journals Investigation of Structure, Optical, and Electrical Properties of CuS Thin Films by CBD Technique

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 684
Author(s):  
Khozik Ahmed Mohammed ◽  
Sabah M. Ahmed ◽  
Raghad Y. Mohammed

Copper Sulfide (CuS) thin films were deposited onto a glass substrate using the Chemical Bath Deposition (CBD) technique. The chemical bath Precursors were made up of CuSO4, SC(NH2)2, and C4H6O6. Different parameters have been considered to specify the optimum conditions for fabricating CuS thin films, such as solution temperature, deposition time, pH level, and different precursor concentrations. It has been found that the optimum deposition time is 20 min at temperature 80 °C and pH = 11. The optimum precursor concentrations were 0.15 M, 0.2 M, and 0.1 M of CuSO4, SC(NH2)2, and C4H6O6, respectively. The structural properties of the thin film were studied using X-ray diffraction (XRD), and a single peak was observed for the thin film made at optimum conditions, while all other cases were amorphous. It is obvious from the optical characterization that the transmission spectra show a red-shift for the cases of increasing deposition time, bath temperature, C4H6O6 concentration, and pH. For the case of increasing CuSO4, blue shifts in the transmission spectra were observed. The energy band gap, resistivity, and activation energy of CuS thin films under optimum conditions are 2.35 eV, 0.7 Ω·cm, and 0.0152 eV, respectively.

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1454
Author(s):  
Gabriele Barrera ◽  
Federico Scaglione ◽  
Matteo Cialone ◽  
Federica Celegato ◽  
Marco Coïsson ◽  
...  

Bimetallic nanomaterials in the form of thin film constituted by magnetic and noble elements show promising properties in different application fields such as catalysts and magnetic driven applications. In order to tailor the chemical and physical properties of these alloys to meet the applications requirements, it is of great importance scientific interest to study the interplay between properties and morphology, surface properties, microstructure, spatial confinement and magnetic features. In this manuscript, FePd thin films are prepared by electrodeposition which is a versatile and widely used technique. Compositional, morphological, surface and magnetic properties are described as a function of deposition time (i.e., film thickness). Chemical etching in hydrochloric acid was used to enhance the surface roughness and help decoupling crystalline grains with direct consequences on to the magnetic properties. X-ray diffraction, SEM/AFM images, contact angle and magnetic measurements have been carried out with the aim of providing a comprehensive characterisation of the fundamental properties of these bimetallic thin films.


Author(s):  
Fatma Salamon

CdS thin films were prepared by chemical bath deposition technique (CBD) onto the glass substrates at different conditions of preparation. The obtained samples are studied by X-Ray diffraction (XRD). The XRD patterns of CdS samples revealed the formation with a hexagonal crystal structure P36mc, and the clear effect of the concentration of thiourea, cadmium sulfide, NaOH, time and temperature deposition, and annealing temperature, on the structure of the prepared thin films. through the study, we found that the samples have preferred orientation along [002], also the thickness of thin films decrease with deposition time after certain value, with the appearance of free cadmium. It has been found that the 200°C is the best temperature for annealing to improve the other structural and physical properties of films.


Author(s):  
Nafis Ahmed ◽  
Arokiyadoss Rayerfrancis ◽  
P. Balaji Bhargav ◽  
Balaji C ◽  
P. Ramasamy

Al-doped ZnO (AZO) thin films are deposited using dc magnetron sputtering and the process conditions are optimized to obtain TCE with desirable properties suitable for photovoltaic applications. In the course, the effects of deposition parameters such as growth temperature, deposition time and plasma power density on the structural and optoelectronic properties were investigated using suitable characterization techniques. XRD analysis of the deposited films at different process conditions showed a strong c-axis preferred orientation. The surface roughness of the deposited films was examined using AFM analysis. Elemental analysis was carried out using XPS. The resistivity and sheet resistance of the thin films decreased with increase in temperature, deposition time and power density. The optimized films deposited at 250°C resulted in electrical resistivity of 6.23 x10-4 Ωcm, sheet resistance of 9.2 Ω/□ and exhibited an optical transmittance of >85% in the visible range. FOM calculations were carried out to analyze the suitability of deposited thinfilms for thin film amorphous silicon solar cell applications. The photo gain of optimized intrinsic a-Si:H layer was in the range of 104, whereas no photo gain was observed in doped a-Si:H layers. The thin film solar cell fabricated using the optimized AZO film as TCE exhibited power conversion efficiency of 6.24% when measured at AM 1.5 condition.


2017 ◽  
Vol 890 ◽  
pp. 303-307 ◽  
Author(s):  
Nurliyana binti Mohamad Arifin ◽  
Fariza Mohamad ◽  
Chia Hui Ling ◽  
Nabiah binti Zinal ◽  
Asyikin Sasha binti Mohd Hanif ◽  
...  

This experiment is about fabrication of n-type Cu2O thin film on fluorine doped thin oxide (FTO) glass by using copper acetate based solution through potentiostaticelectrodeposition. A range of deposition time was carried out from 20 to 40 minutes and the results were obtained. The other parameters such as potential deposition, bath temperature and pH value of solution were kept constant for-0.125Vvs Ag/AgCl, 60 °C and pH 6.3, respectively. It was found that the optimum deposition time for growth mechanism of n-type Cu2O thin film was 30 minutes. Structural, morphologicaland optical properties were characterized by using X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), and Ultraviolet and visible Absorption Spectroscopy (UV-Vis), respectively. The successfully fabrication of n-Cu2O was confirmed using PEC measurement result.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


MRS Advances ◽  
2016 ◽  
Vol 1 (39) ◽  
pp. 2711-2716 ◽  
Author(s):  
V. Vasilyev ◽  
J. Cetnar ◽  
B. Claflin ◽  
G. Grzybowski ◽  
K. Leedy ◽  
...  

ABSTRACTAlN thin film structures have many useful and practical piezoelectric and pyroelectric properties. The potential enhancement of the AlN piezo- and pyroelectric constants allows it to compete with more commonly used materials. For example, combination of AlN with ScN leads to new structural, electronic, and mechanical characteristics, which have been reported to substantially enhance the piezoelectric coefficients in solid-solution AlN-ScN compounds, compared to a pure AlN-phase material.In our work, we demonstrate that an analogous alloying approach results in considerable enhancement of the pyroelectric properties of AlN - ScN composites. Thin films of ScN, AlN and Al1-x ScxN (x = 0 – 1.0) were deposited on silicon (004) substrates using dual reactive sputtering in Ar/N2 atmosphere from Sc and Al targets. The deposited films were studied and compared using x-ray diffraction, XPS, SEM, and pyroelectric characterization. An up to 25% enhancement was observed in the pyroelectric coefficient (Pc = 0.9 µC /m2K) for Sc1-xAlxN thin films structures in comparison to pure AlN thin films (Pc = 0.71 µC/m2K). The obtained results suggest that Al1-x ScxN films could be a promising novel pyroelectric material and might be suitable for use in uncooled IR detectors.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2013 ◽  
Vol 710 ◽  
pp. 170-173
Author(s):  
Lian Ping Chen ◽  
Yuan Hong Gao

It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.


2011 ◽  
Vol 239-242 ◽  
pp. 891-894 ◽  
Author(s):  
Tsung Fu Chien ◽  
Jen Hwan Tsai ◽  
Kai Huang Chen ◽  
Chien Min Cheng ◽  
Chia Lin Wu

In this study, thin films of CaBi4Ti4O15with preferential crystal orientation were prepared by the chemical solution deposition (CSD) technique on a SiO2/Si substrate. The films consisted of a crystalline phase of bismuth-layer-structured dielectric. The as-deposited CaBi4Ti4O15thin films were crystallized in a conventional furnace annealing (RTA) under the temperature of 700 to 800°C for 1min. Structural and morphological characterization of the CBT thin films were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM). The impedance analyzer HP4294A and HP4156C semiconductor parameters analyzer were used to measurement capacitance voltage (C-V) characteristics and leakage current density of electric field (J-E) characteristics by metal-ferroelectric-insulator- semiconductor (MFIS) structure. By the experimental result the CBT thin film in electrical field 20V, annealing temperature in 750°C the CBT thin film leaks the electric current is 1.88x10-7A/cm2and the memory window is 1.2V. In addition, we found the strongest (119) peak of as-deposited thin films as the annealed temperature of 750°C


Sign in / Sign up

Export Citation Format

Share Document