scholarly journals Numerical Evaluation of the Perfobond (PBL) Shear Connector Subjected to Lateral Pressure Using Coupled Rigid Body Spring Model (RBSM) and Nonlinear Solid Finite Element Method (FEM)

Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 743
Author(s):  
Muhammad Shoaib Karam ◽  
Yoshihito Yamamoto ◽  
Hikaru Nakamura ◽  
Taito Miura

An analytical investigation focusing on the concrete damage progress of the PBL shear connector under the influence of various lateral pressures, employing a coupled RBSM and solid FEM model was carried out. The analytical model succeeded in simulating the test shear capacities and the failure modes adequately. The internal failure process was also clarified; the two horizontal cracks occurred near the top of the concrete dowels through the hole of the perforated steel plate, and afterward, the two vertical cracks also initiated and propagated along with the shear surface. In a low lateral pressure case, the shear strength was determined by the vertical cracks propagated along the shear surface. While as the amount of applied lateral pressure increased, the shear strength of the two vertical cracked surfaces was enhanced, and the shear strength of the PBL was characterized by the occurrence of the splitting cracks and caused the splitting failure into the side concrete blocks. Moreover, the combined effects of lateral pressure and hole diameters were also evaluated numerically, and it was found that the increase in shear strength was more in a large diameter case subjected to high lateral pressure because of the wide compressive regions generated around the concrete dowel.

2013 ◽  
Vol 779-780 ◽  
pp. 332-336
Author(s):  
Ping Cao ◽  
Wen Cheng Fan ◽  
Ke Zhang

To study the failure mechanism and failure mode of jointed rock under compressive-shear, many rock-like material specimens containing non-coplanar joints were made and a series of experiments were carried out. In the experiments, mica sheets were used as joint fillings, cement mortar was selected as rock-like material. Joints were made by inserting the mica sheet in cement mortar before initial setting. Mica sheets were left down as joint fillings. The results of experiments show that the dip angles of major joint have important influence on the failure mode of specimens. And the emerging position of wing cracks which exist in the prophase of specimens failure process changes with the dip angle. The shear strength of specimens has an important relationship with the dip angle of major joints. The smallest shear strength happens in the specimen with a joint angle of 15°, while the biggest value happens in 60°.


2012 ◽  
Vol 510 ◽  
pp. 356-361
Author(s):  
Xu Dan Dang ◽  
Shao Jie Shi ◽  
Yi Guo ◽  
Jun Xiao

The finite element software was used to get the X-cor sandwich’s shear strength. During the shear strength analysis, the failure criterion and materials stiffness degradation rules fitting for the analysis of X-cor sandwich’s failure mechanism were proposed and the X-cor sandwich’s failure process and modes were also clarified. According to the failure criterion we used the elements with stiffness degradation and their distributions in the finite element model to simulate the types and propagation path of the failure and the failure mechanisms of X-cor sandwich under shear were explained. The finite element analysis indicates during the shear firstly the resin regions fail and then the multiple failure modes of Z-pin pull-out from the face-sheet, Z-pin shear off and Z-pin buckling all exist. The propagation paths of the failure elements are dispersive. By contrasting the finite element results and test results the values are consistent well and the error range is -10.4%~7.4%. The comparison results show that the failure criterion and stiffness degradation rules are reasonable and this method can be used to predict the X-cor sandwich’s shear strength.


2021 ◽  
Vol 15 (57) ◽  
pp. 24-39
Author(s):  
Boursas Farid ◽  
Djamel Boutagouga

A great deal of research has been conducted to improve the understanding of the behavior of new types of shear connectors. This article presents the study of I-shaped connectors behavior under monotonic load welded in four different orientations in order to get the position which gives the high shear strength and the best ductility. For this purpose, eight push-out test specimens with I-shaped shear connectors with different orientations and dimensions were tested in C20/25 and C30/37 concrete classes. The load-slip behavior and failure modes of the tested connectors are presented and discussed. Furthermore, a non-linear 3D finite element modelling of the push-out test is performed in order to further investigate the influencing parameters on the I-shaped connectors behavior. Hence, a parametric study is carried out by using the established 3D finite elements model to study the influence of concrete strength, connector’s steel grade, reinforcements, height and length of the connector. Both experimental and numerical results show that there is a privilege orientation for which the shear strength of an I-shaped shear connector is significantly higher than that of all other tested orientations.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 442-458
Author(s):  
Sandip Chhetri ◽  
Rachel A. Chicchi

Experimental testing of deformed rebar anchors (DRAs) has not been performed extensively, so there is limited test data to understand their failure behavior. This study aims to expand upon these limited tests and understand the behavior of these anchors, when loaded in tension. Analytical benchmark models were created using available test data and a parametric study of deformed rebar anchors was performed. Anchor diameter, spacing, embedment, and number of anchors were varied for a total of 49 concrete breakout simulations. The different failure modes of anchors were predicted analytically, which showed that concrete breakout failure is prominent in the DRA groups. The predicted concrete breakout values were consistent with mean and 5% fractile concrete capacities determined from the ACI concrete capacity design (CCD) method. The 5% fractile factor determined empirically from the simulation results was kc = 26. This value corresponds closely with kc = 24 specified in ACI 318-19 and ACI 349-13 for cast-in place anchors. The analysis results show that the ACI CCD formula can be conservatively used to design DRAs loaded in tension by applying a kc factor no greater than 26.


2011 ◽  
Vol 378-379 ◽  
pp. 15-18
Author(s):  
Yong Bin Zhang ◽  
Zheng Zhao Liang ◽  
Shi Bin Tang ◽  
Jing Hui Jia

In this paper, a ring shaped numerical specimen is used to studying the failure process in brittle materials. The ring specimen is subjected to a compressive diametral load and contains two angled central cracks. Numerical modeling in this study is performed. It is shown that the obtained numerical results are in a very good agreement with the experiments. Effect of the crack orientation angle on the failure modes and loading-displace responses is discussed. In the range of 0°~40°, the fracture paths are curvilinear forms starting from the tip of pre-existing cracks and grow towards the loading points. For the crack orientation angle 90°, vertical fractures will split the specimen and the horizontal cracks do not influence the fracture process.


2017 ◽  
Vol 10 (1) ◽  
pp. 30-40
Author(s):  
G. SAVARIS ◽  
R. C. A. PINTO

Abstract Self-consolidating concrete is characterized by its high flowability, which can be achieved with the addition of superplasticizer and the reduction of the amount and size of coarse aggregates in the concrete mix. This high flowability allows the concrete to properly fill the formwork without any mechanical vibration. The reduction in volume and particle size of the coarse aggregates may result in lower shear strength of beams due to a reduced aggregate interlock. Therefore, an experimental investigation was conducted to evaluate the influence of the reduction in the volume fraction and the nominal size of coarse aggregate on concrete shear strength of self-consolidating beams. Six concrete mixes were produced, four self-consolidating and two conventionally vibrated. A total of 18 beams, with flexural reinforcement but without shear reinforcement were cast. These beams were tested under a four-point loading condition. Their failure modes, cracking patterns and shear resistances were evaluated. The obtained shear resistances were compared to the theoretical values given by the ACI-318 and EC-2 codes. The results demonstrated a lower shear resistance of self-consolidating concrete beams, caused mainly due to the reduced aggregate size.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Liuqun Zhao ◽  
Li Zheng ◽  
Hui Qin ◽  
Tiesuo Geng ◽  
Yonggang Tan ◽  
...  

Concrete three-point bending beams with preexisting cracks are widely used to study the growth process of I-II mixed mode cracks. Studying the failure characteristics of preexisting cracks at different locations on concrete three-point bending beams not only has important scientific significance but also has a wide range of engineering application backgrounds in the safety assessment of engineering structures. In this paper, through several numerical experiments, the influence of preexisting cracks at different positions on the failure characteristics of concrete three-point bending beams is studied, and three typical failure modes are obtained. The failure process of the specimens with three typical failure modes is discussed in detail, and it is pointed out that the crack failure mode is tensile failure. The change trends of bearing capacity, acoustic emission quantity, and acoustic emission energy of three typical failure modes are analyzed. The maximum bearing capacity, the maximum acoustic emission quantity, and energy of three failure modes of concrete three-point bending beams generally show an increasing trend.


Polymer ◽  
2001 ◽  
Vol 42 (1) ◽  
pp. 129-135 ◽  
Author(s):  
Chang-Mou Wu ◽  
Ming Chen ◽  
József Karger-Kocsis

2010 ◽  
Vol 160-162 ◽  
pp. 135-139
Author(s):  
Ji Kun Zhao

With static and dynamic load for the research background, this paper conducted a four-phase composite model for concrete damage test simulation of micro-mechanics. The two kinds of three-point bending beam load ware studied in case of failure process. The study found that the location of the main crack in the most disadvantaged section of beam shear in the vicinity. Crack is always along the aggregate and the mortar bond zone be extended. The main crack extension direction is always toward the load point. The main crack is showing a tortuous shape. Dynamic load and static load the stress - strain curve is basically similar shape, but basically the same as the starting point of the initial fracture. Stress wave in the sample after multiple visits, is the main reason leading to the breakdown of the sample. Dynamic load cases, the concrete elastic modulus higher than the static modulus of elasticity, numerical simulation results agree well with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document