scholarly journals Assessment of the Thermal Properties of Aromatic Esters as Novel Phase Change Materials

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 919
Author(s):  
Rebecca Ravotti ◽  
Oliver Fellmann ◽  
Ludger J. Fischer ◽  
Jörg Worlitschek ◽  
Anastasia Stamatiou

In the quest for a decarbonized energy system, the development of highly efficient technologies that allow the integration of renewables is of the utmost importance. Latent Heat Storage systems with Phase Change Materials (PCM) can contribute to solving the issue of the mismatch between demand and supply brought forward by renewable energies. Despite possessing promising thermal properties, organic PCMs and esters in particular have rarely been investigated. In the present study, eight commercial aromatic esters are assessed as possible PCM candidates. To do so, their thermal properties, such as phase change temperature, enthalpy of fusion, density, and thermal conductivity, alongside sustainability and toxicity issues, are considered. The aromatic esters are found to possess phase change temperatures between −16 ∘C and 190 ∘C and maximum enthalpies of fusion of 160 J/g. This, alongside densities above 1 g/mL, makes them interesting candidates for high-temperature applications, where, typically, salts and ceramics or metals dominate as PCMs.

2019 ◽  
Vol 9 (2) ◽  
pp. 225 ◽  
Author(s):  
Rebecca Ravotti ◽  
Oliver Fellmann ◽  
Nicolas Lardon ◽  
Ludger Fischer ◽  
Anastasia Stamatiou ◽  
...  

As global energy demand increases while primary sources and fossil fuels’ availability decrease, research has shifted its focus to thermal energy storage systems as alternative technologies able to cover for the mismatch between demand and supply. Among the different phase change materials available, esters possess particularly favorable properties with reported high enthalpies of fusion, low corrosivity, low toxicity, low supercooling, thermal and chemical stability as well as biodegradability and being derived from renewable feedstock. Despite such advantages, little to no data on the thermal behavior of esters is available due to low commercial availability. This study constitutes a continuation of previous works from the authors on the investigation of fatty esters as novel phase change materials. Here, methyl, pentyl and decyl esters of arachidic acid, and pentyl esters of myristic, palmitic, stearic and behenic acid are synthesized through Fischer esterification with high purities and their properties are studied. The chemical structures and purities are confirmed through Attenuated Total Reflectance Infrared Spectroscopy, Gas Chromatography coupled with Mass Spectroscopy and Nuclear Magnetic Resonance Spectroscopy, while the determination of the thermal properties is performed through Differential Scanning Calorimetry and Thermogravimetric Analysis. In conclusion, some correlations between the melting temperatures and the chemical structures are discovered, and the fatty esters are assessed based on their suitability as phase change materials for latent heat storage applications.


2013 ◽  
Vol 773 ◽  
pp. 534-537 ◽  
Author(s):  
Li Li Feng ◽  
Jing Jing Tong ◽  
Chong Yun Wang

Shape-stabilized phase change material (PCM) composed of polyethylene glycol and silica hollow nanospheres was prepared by a vacuum impregnating method. Thermal properties of the composite PCM were investigated by various techniques. Lower phase change temperature and enthalpy of the composite PCM were observed. It is concluded that the phase change properties of the composite PCM are influenced by the adsorption confinement of the PEG segments from the porous structure of the silica hollow nanospheres.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1300 ◽  
Author(s):  
Rebecca Ravotti ◽  
Oliver Fellmann ◽  
Nicolas Lardon ◽  
Ludger Fischer ◽  
Anastasia Stamatiou ◽  
...  

In the presented work, five bio-based and bio-degradable cyclic esters, i.e. lactones, have been investigated as possible phase change materials for applications in latent heat storage systems. Commercial natural lactones such as ε-caprolactone and γ-valerolactone were easily purchased through chemical suppliers, while 1,2-campholide, oxa-adamantanone and dibenzochromen-6-one were synthesized through Baeyer-Villiger oxidation. The compounds were characterized with respect to attenuated total reflectance spectroscopy and gas chromatography coupled with mass spectroscopy, in order to confirm their chemical structures and identity. Subsequently, thermogravimetric analysis and differential scanning calorimetry were used to measure the phase change temperatures, enthalpies of fusion, degradation temperatures, as well to estimate the degree of supercooling. The lactones showed a wide range of phase change temperatures from −40 °C to 290 °C, making them a high interest for both low and high temperature latent heat storage applications, given the lack of organic phase change materials covering phase change temperature ranges below 0 °C and above 80 °C. However, low enthalpies of fusion, high degrees of supercooling and thermal degradations at low temperatures were registered for all samples, rendering them unsuitable as phase change materials.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5572
Author(s):  
Rebecca Ravotti ◽  
Jörg Worlitschek ◽  
Colin R. Pulham ◽  
Anastasia Stamatiou

Latent Heat Storage (LHS) with Phase-Change Materials (PCMs) represents a high energy density storage technology which could be applied in a variety of applications such as waste heat recovery and integration of renewable energy technologies in energy systems. To increase the sustainability of these storage solutions, PCMs have to be developed with particular regard to bio-origin and biodegradability. Triglycerides represent an interesting class of esters as the main constituents of animal and vegetable fats, with attractive thermal properties. In order to be used as PCMs, the thermal behaviour of triglycerides has to be fully understood, as in some cases they have been reported to show polymorphism and supercooling. This study assesses the suitability of triglycerides as PCMs by reviewing the literature published so far on their behaviour and properties. In particular, melting points, enthalpies of fusion, polymorphism, thermal conductivities, heat capacities and thermal cycling stabilities are considered, with a focus on LHS and thermal energy storage applications. In addition, the efforts conducted regarding modelling and the prediction of melting points and enthalpies based on chemical structures are summarized and assessed.


Author(s):  
J. Martínez-Gómez ◽  
E. Urresta ◽  
D. Gaona ◽  
G. Guerrón

Esta investigación tiene como objetivo seleccionar un material de cambio de fase (PCM) que cumplen mejor la solución del almacenamiento de energía térmica entre 200-400 ° C y reducir el costo de producción. El uso de métodos multicriterios de toma de decisiones (MCMD) para la evaluación fueron proporcionales implementados como COPRAS-G, TOPSIS y VIKOR. La ponderación de los criterios se realizó por el método AHP (proceso analítico jerárquico) y los métodos de entropía. La correlación de los resultados entre los tres métodos de clasificación ha sido desarrollada por el coeficiente de correlación de Spearman. Los resultados ilustran el mejor y la segundo mejor opción para los tres MCDM fueron NaOH y KNO3. Además, tenía valores de correlación de Spearman entre los métodos excede de 0.714.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Qiangying Yi ◽  
Gleb B. Sukhorokov ◽  
Jin Ma ◽  
Xiaobo Yang ◽  
Zhongwei Gu

Phase change materials absorb the thermal energy when changing their phases (e.g., solid-to-liquid) at constant temperatures to achieve the latent heat storage. The major drawbacks such as limited thermal conductivity and leakage prevent the PCMs from wide application in desired areas. In this work, an environmentally friendly and low cost approach, layer-by-layer (LbL) assembly technique, was applied to build up ultrathin shells to encapsulate the PCMs and therefore to regulate their changes in volume when the phase change occurs. Generally, the oppositely charged strong polyelectrolytes Poly(diallyldimethylammonium chloride) (PDADMAC) and Poly(4-styrenesulfonic acid) sodium salt (PSS) were employed to fabricate multilayer shells on emulsified octadecane droplets using either bovine serum albumin (BSA) or sodium dodecyl sulfate (SDS) as surfactant. Specifically, using BSA as the surfactant, polyelectrolyte encapsulated octadecane spheres in size of ∼500 nm were obtained, with good shell integrity, high octadecane content (91.3% by mass), and good thermal stability after cycles of thermal treatments.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3033
Author(s):  
Anastasia Stamatiou ◽  
Lukas Müller ◽  
Roger Zimmermann ◽  
Jamie Hillis ◽  
David Oliver ◽  
...  

Latent heat storage units for refrigeration processes are promising as alternatives to water/glycol-based storage due to their significantly higher energy densities, which would lead to more compact and potentially more cost-effective storages. In this study, important thermophysical properties of five phase change material (PCM) candidates are determined in the temperature range between −22 and −35 °C and their compatibility with relevant metals and polymers is investigated. The goal is to complement existing scattered information in literature and to apply a consistent testing methodology to all PCMs, to enable a more reliable comparison between them. More specifically, the enthalpy of fusion, melting point, density, compatibility with aluminum, copper, polyethylene (PE), polypropylene (PP), neoprene and butyl rubber, are experimentally determined for 1-heptanol, n-decane, propionic acid, NaCl/water mixtures, and Al(NO3)3/water mixtures. The results of the investigations reveal individual strengths and weaknesses of the five candidates. Further, 23.3 wt.% NaCl in water stands out for its very high volumetric energy density and n-decane follows with a lower energy density but better compatibility with surrounding materials and supercooling performance. The importance of using consistent methodologies to determine thermophysical properties when the goal is to compare PCM performance is highlighted.


Sign in / Sign up

Export Citation Format

Share Document