scholarly journals The Role of Deposition Temperature in the Photovoltaic Properties of RF-Sputtered CdSe Thin Films

Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 73
Author(s):  
Hasrul Nisham Rosly ◽  
Kazi Sajedur Rahman ◽  
Siti Fazlili Abdullah ◽  
Muhammad Najib Harif ◽  
Camellia Doroody ◽  
...  

Cadmium selenide (CdSe) thin films were grown on borosilicate glass substrates using the RF magnetron sputtering method. In this study, CdSe thin film was deposited at a deposition temperature in the range of 25 °C to 400 °C. The influence of deposition or growth temperature on the structural, morphological, and opto-electrical properties of CdSe films was investigated elaborately to achieve a good-quality window layer for solar-cell applications. The crystal structure, surface morphology, and opto-electrical characteristics of sputtered CdSe films were determined using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV–Vis spectrophotometry, and Hall effect measurement, respectively. The XRD results revealed the polycrystalline nature of CdSe, with a hexagonal structure having a strong preferential orientation toward the (002) plane. As evident from the FESEM images, the average grain size and surface morphology of the films were dependent on deposition temperatures. The carrier concentration was obtained as 1014 cm−3. The band gap in the range of 1.65–1.79 eV was found. The explored results suggested that sputtered CdSe thin film deposited at 300 °C has the potential to be used as a window layer in solar cells.

2012 ◽  
Vol 626 ◽  
pp. 401-403 ◽  
Author(s):  
C.H. Rosmani ◽  
S. Abdullah ◽  
Mohamad Rusop

CdSe thin film was prepared by using spin coating method .The surface morphology of CdSe thin films can be used as the main material in solar cells application, by using sodium selenosulfate as a selenium source and cadmium chloride as cadmium precursor. The solution for each sample had with different molar ratio of cadmium chloride and sodium selenosulfate to know the comparison between the samples. The spin for each samples were constant parameter with 3000 rpm at 30 seconds and dry in ambient temperature. The characterization using atomic force microscopy (AFM) to know the surface morphology of CdSe thin film. The important thing in this paper was to know the surface morphology of CdSe thin films as the comparison with other experiment for solar cells application.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


2011 ◽  
Vol 13 ◽  
pp. 87-92 ◽  
Author(s):  
M.S.P Sarah ◽  
F.S. Zahid ◽  
M.Z. Musa ◽  
U.M. Noor ◽  
Z. Shaameri ◽  
...  

The photoconductivity of a nanocomposite MEH-PPV:TiO2 thin film is investigated. The nanocomposite MEH-PPV:TiO2 thin film was deposited on a glass substrate by spin coating technique. The composition of the TiO2 powder was varied from 5 wt% to 20 wt% (with 5 wt% interval). The concentration of the MEH-PPV is given by 1 mg/1 ml. The current voltage characteristics were measured in dark and under illumination. The photoconductivity showed increment in value as the composition of the TiO2 is raised in the polymer based solution. The absorption showed augmentation as the amount of TiO2 is increased. The escalation of the current voltage is then supported by the results of surface morphology.


2006 ◽  
Vol 306-308 ◽  
pp. 1313-1318
Author(s):  
J.S. Kim ◽  
B.H. Park ◽  
T.J. Choi ◽  
Se Hyun Shin ◽  
Jae Chul Lee ◽  
...  

Pb0.65Ba0.35ZrO3 (PBZ) thin films have been grown on MgO (001) substrates by pulsed-laser deposition (PLD). We have compared the structural and dielectric properties of PBZ films grown at various temperatures. A highly c-axis orientation has appeared at PBZ film grown at the deposition temperature of 550oC. The c-axis oriented PBZ film has also shown the largest tunability among all the PBZ films in capacitance-voltage measurements. The tunability and dielectric loss of the PBZ film was 20% and 0.00959, respectively. In addition, we have compared the temperature coefficient of capacitance (TCC) of a PBZ film with that of a Ba0.5Sr0.5TiO3 (BST) film which is a well-known material applicable to tunable microwave devices. We have confirmed that TCC value of a PBZ thin film was three-times smaller than that of a BST thin film.


2011 ◽  
Vol 335-336 ◽  
pp. 1418-1423
Author(s):  
De Yin Zhang ◽  
Wei Qian ◽  
Kun Li ◽  
Jian Sheng Xie

The Ion Beam Enhanced Deposited (IBED) lithium tantalate (LiTaO3) thin film samples with Al/LiTaO3/Pt electrode structure were prepared on the Pt/Ti/SiO2/Si(100) and SiO2/Si(100) substrate respectively. The crystallization, surface morphology, ferroelectric property, and fatigue property of the prepared samples with the different annealed processes were investigated. The XRD measured results show that the prepared samples have the polycrystal structure of LiTaO3 with the preferred orientation of <012> and <104> located at the 2θ of 23.60 and 32.70 respectively. The SEM morphology analysis reveals the prepared film annealed at 550°C is uniform, smooth and crack-free on the surface and cross section. The ferroelectric property measured results show that the remanent polarization Pr of the samples annealed at different temperature almost increase with the electric field intensity stronger. The leakage current makes the hysteresis loop of the samples subjected to a strong measured electric filed difficult to appear the same saturation hysteresis loop as the single-crystal LiTaO3. The prepared samples annealed at 550°C have a Pr value of 11.5μC/cm2 when subjected to the electrical field of 400kV/cm. The breakdown voltage of the 587nm thick thin film sample is high as to 680 kV/cm. The fatigue property measured results show only 15.17% Pr drop of the prepared films annealed at 550°C appear after 5×1010 cycles polarized by the 10MHz sinusoidal signal with the peak-to-peak amplitude of 10 Volt. The ferroelectric properties of the prepared films meet the practical application requirements of charge response measurement of the LiTaO3 infrared detector owe to the Pr of the prepared films annealed at different temperature large beyond 10μC/cm2 when the prepared films subjected to a strong electric filed larger than 400 kV/cm. The experimental results also show that the surface morphology, the ferroelectric and fatigue properties of the IBED LiTaO3 thin films are significant better than those of the Sol-Gel derived LiTaO3 thin films.


CrystEngComm ◽  
2018 ◽  
Vol 20 (38) ◽  
pp. 5735-5743 ◽  
Author(s):  
Ofir Friedman ◽  
Omri Moschovitz ◽  
Yuval Golan

Chemically graded Cd(S,Se) thin film and photovoltaic cell illustration.


Optik ◽  
2019 ◽  
Vol 199 ◽  
pp. 163517 ◽  
Author(s):  
Mahsa Etminan ◽  
Nooshin. S. Hosseini ◽  
Narges Ajamgard ◽  
Ataalah Koohian ◽  
Mehdi Ranjbar

Author(s):  
S.B. Deshmukh ◽  
R.H. Bari

The spray pyrolysis deposition technique has number of advantages to produce advance nanostructured oxide films. The film surface morphology and structure depends on the precursor and doping solution and solvents used with their optimized parameters. The surface to volume ratio is achieved is beneficial to gas sensing. Therefore in this paper we report the nanostructured ZrO2 thin films was prepared using spray pyrolysis technique for ammonia gas sensing. There is various precursors such as Zirconium acetylacetonate, Zirconium nitrate, Zirconium tetra chloride etc. In spite of them, the Zirconium oxychloride octohydrate (0.05 M) was chosen as precursor solution and was prepared by dissolving in pure distilled water (Solvent). The films were deposited on heated glass substrate at 350◦C and were annealed at 500◦C for 1 hrs. It was characterized using XRD, FESEM, and TEM technique to examine crystal structure, surface morphology and microstructure properties. The average crystallite and grain size observed to be nanostructured in nature. The different test target gas performances were tested with various concentrations at different operating temperature. The films sprayed for 20 min with optimized spray parameter were observed to be most sensitive (S=58.5) to NH3 for 500 ppm at 150°C. The film thickness dependence parameters: FWHM (0.02678 radians) for peak 111, Inter-planer distance (d=0.2958 nm), lattice parameters Inter-atomic spacing ( a=0.511 nm), atomic volume(a3= 133Å3 ),micro strain (2.8 to 0.76 x 10-2), crystallite size (4-5nm) average grain size (32nm), dislocation density (1.73 x1015 lines/cm2), texture coefficient (>1), specific surface area(31 m2/g), activation energy and band gap were studied. The sensor shows quick response (4 s) and fast recovery (10 s). Reported results are discussed and interpreted


Sign in / Sign up

Export Citation Format

Share Document