scholarly journals Experimental Study on the Thickness-Dependent Hardness of SiO2 Thin Films Using Nanoindentation

Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.

2016 ◽  
Vol 23 (03) ◽  
pp. 1650009 ◽  
Author(s):  
İ. A. KARIPER

This study examines the critical surface energy of manganese sulfite (MnSO[Formula: see text] crystalline thin film, produced via chemical bath deposition (CBD) on substrates. In addition, parachor, which is an important parameter of chemical physics, and its relationship with grain size, film thickness, etc., has been investigated for thin films. For this purpose, MnSO3 thin films were deposited at room temperature using different deposition times. Structural properties of the films, such as film thickness and average grain size, were examined using X-ray diffraction; film thickness and surface properties were measured by and atomic force microscope; and critical surface tension of MnSO3 thin films was measured with Optical Tensiometer and calculated using Zisman method. The results showed that critical surface tension and parachor of the films have varied with average grain size and film thickness. Critical surface tension was calculated as 32.97, 24.55, 21.03 and 12.76[Formula: see text]mN/m for 14.66, 30.84, 37.07 and 44.56[Formula: see text]nm grain sizes, respectively. Film thickness and average grain size have been increased with the deposition time and they were found to be negatively correlated with surface tension and parachor. The relationship between film thickness and parachor was found as [Formula: see text] whereas the relationship between average grain size and parachor was found as [Formula: see text] We also showed the relationships between parachor and some thin films parameters.


2012 ◽  
Vol 252 ◽  
pp. 211-215
Author(s):  
Xiao Hua Sun ◽  
Shuang Hou ◽  
Zhi Meng Luo ◽  
Cai Hua Huang ◽  
Zong Zhi Hu

Bismuth zinc niobate titanium (Bi1.5Zn0.5 Nb0.5Ti1.5O7) (BZNT) thin films were deposited on PtTiSiO2Si substrates by radio frequency (rf) magnetron sputtering. The microstructure, surface morphology, stress, dielectric and tunable properties of thin films were investigated as a function of initial annealing temperature. It’s found that high initial annealing temperature increases the grain size, dielectric constant and tunability of BZNT films simultaneously and decreases the tensile stress in films. The BZNT thin film annealed from 500 °C to 700 °C shows the highest FOM value of 45.67 with the smallest dielectric loss and upper tunability.


1994 ◽  
Vol 361 ◽  
Author(s):  
Kazushi Amanuma ◽  
Takashi Hase ◽  
Yoicht Mtyasaka

ABSTRACTStructural and electrical properties were investigated for chemically prepared SrBi2Ta2O9(SBT) thin films on Pt/Ti/SiO2/Si substrates. Good ferroelectric properties were obtained with a Pt top electrode: Pr=10.0μC/cm2 and Ec-34kV/cm. Au top electrodes resulted in smaller Pr. However, no fatigue was observed up to 109 switching cycles regardless of the top electrode material. Grains were spherical, not columnar, and the average grain size was 200nm. A marked structural change took place in the bottom Pt/Ti electrode during film preparation. The SIMS analysis indicates the reaction between Bi and Pt


2013 ◽  
Vol 372 ◽  
pp. 563-566
Author(s):  
Shohei Fukamizu ◽  
Daisuke Hironiwa ◽  
Takashi Minemoto

CuInS2 (CIS) is the promising candidate of an absorber layer of high efficiency thin film solar cells. The crystal quality of CIS is one of the important factors for high efficiency. A chemical doping approach using antimony and bismuth (Bi) is well known for improving crystal quality in Cu (In,Ga)Se2 thin films. In this study, the effect of Bi doping on evaporated CIS thin films was investigated. A CIS thin film without Bi doping annealed at 600°C showed small crystal grain size of ~1 μm, which was smaller than the CIS film thickness of 2 μm. The small addition of 50 nm-thick Bi promoted crystal growth and large grain size of greater than 1 μm, which was comparable to the CIS film thickness, was realized. The CIS films without and with Bi addition had surface precipitates identified as Cu-S and Cu-Bi-S compounds, respectively. The crystal growth promotion by Bi addition can be attributed to that the Cu-Bi-S compound which has lower melting point of 470~490°C than that of the Cu-S compound of 507°C acted as flux for crystal growth.


2007 ◽  
Vol 21 (18n19) ◽  
pp. 3404-3411
Author(s):  
M. C. KAO ◽  
H. Z. CHEN ◽  
S. L. YOUNG ◽  
C. C. LIN ◽  
C. C. YU

LiTaO 3 thin films were deposited on Pt / Ti / SiO 2/ Si substrates by means of a sol-gel spin-coating technology and rapid thermal annealing (RTA). The influence of various annealing treatments on the characteristics of the thin films were studied by varying the single-annealed-layer thickness (50 ~ 200 nm ) and heating temperatures (500 ~ 800° C ) of the samples. Experimental results reveal that the single-annealed-layer strongly influences grain size, dielectricity and ferroelectricity of LiTaO 3 thin films. The grain size of LiTaO 3 thin film decreases slightly with increasing thickness of the single-annealed-layer, and highly c-axis orientated LiTaO 3 films can be obtained for a single-annealed-layer of 50 nm. When the thickness of the single-annealed-layer was increased from 50 to 200 nm, the relative dielectric constant of LiTaO 3 thin film decreased from 65 to 35, but the dielectric loss factor (tanδ) was increased. The LiTaO 3 films with the single-annealed-layer of 50 nm showed excellent ferroelectric properties in terms of a remanent polarization ( P r) of 12.3 μ C /cm2 (Ec ∼ 60 kV/cm), and a low current density of 5.2×l0-8 A /cm2 at 20 kV/cm.


1996 ◽  
Vol 433 ◽  
Author(s):  
M.C. Gust ◽  
L.A. Momoda ◽  
M.L. Mecartney

AbstractBaxSrl−xTiO3 thin films with varying Sr concentration were prepared on Pt coated Si substrates using methoxypropoxide based alkoxide precursors. Films were crystallized by heat treating at 700°C for 30 minutes in an oxygen atmosphere after deposition of each layer. Film thickness ranged from 230 to 260 nm. No evidence of tetragonality was observed in any of the compositions. Films with higher Sr concentrations had a larger average grain size, larger grain size distribution, and increased (111) orientation on (111) oriented Pt. The highest dielectric constant of ˜400 was found for Ba 0.5Sr0.5TiO3, although no direct correlation could be made between the composition and dielectric properties.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1621
Author(s):  
Mujib Ur Rahman ◽  
Yonghao Xi ◽  
Haipeng Li ◽  
Fei Chen ◽  
Dongjie Liu ◽  
...  

The stability/instability behavior of polystyrene (PS) films with tunable thickness ranging from higher as-cast to lower residual made on Si substrates with and without native oxide layer was studied in this paper. For further extraction of residual PS thin film (hresi) and to investigate the polymer–substrate interaction, Guiselin’s method was used by decomposing the polymer thin films in different solvents. The solvents for removing loosely adsorbed chains and extracting the strongly adsorbed irreversible chains were selected based on their relative desorption energy difference with polymer. The PS thin films rinsed in chloroform with higher polarity than that of toluene showed a higher decrease in the residual film thickness but exhibited earlier growth of holes and dewetting in the film. The un-annealed samples with a higher oxide film thickness showed a higher decrease in the PS residual film thickness. The effective viscosity of PS thin films spin-coated on H-Si substrates increased because of more resistance to flow dynamics due to the stronger polymer–substrate interaction as compared to that of Si-SiOx substrates. By decreasing the film thickness, the overall effective mobility of the film increased and led to the decrease in the effective viscosity, with matching results of the film morphology from atomic force microscopy (AFM). The polymer film maintained low viscosity until a certain period of time, whereupon further annealing occurred, and the formation of holes in the film grew, which ultimately dewetted the film. The residual film decrement, growth of holes in the film, and dewetting of the polymer-confined thin film showed dependence on the effective viscosity, the strength of solvent used, and various involved interactions on the surface of substrates.


2021 ◽  
Vol 67 (2 Mar-Apr) ◽  
pp. 263
Author(s):  
T. O. Daniel ◽  
U. E. Uno ◽  
K. U. Isah ◽  
U. Ahmadu

This study is focused on the investigation of SnS thin film for transistor application. Electron trap which is associated with grain boundary effect affects the electrical conductivity of SnS semiconductor thin film thereby militating the attainment of the threshold voltage required for transistor operation. Grain size and grain boundary is a function of a semiconductor’s thickness. SnS semiconductor thin films of 0.20, 0.25, 0.30, 0.35, 0.40 μm were deposited using aerosol assisted chemical vapour deposition on glass substrates. Profilometry, Scanning electron microscope, Energy dispersive X-ray spectroscopy and hall measurement were used to characterise the composition, microstructure and electrical properties of the SnS thin film.  SnS thin films were found to consist of Sn and S elements whose composition varied with increase in thickness. The film conductivity was found to vary with grain size and grain boundary which is a function of the film thickness. The SnS film of 0.4 μm thickness shows optimal grain growth with a grain size of 130.31 nm signifying an optimum for the as deposited SnS films as the larger grains reduces the number of grain boundaries and charge trap density which allows charge carriers to move freely in the lattice thereby causing a reduction in resistivity and increase in conductivity of the films which is essential in obtaining the threshold voltage for a transistor semiconductor channel layer operation. The carrier concentration of due to low resistivity of 3.612 ×105 Ωcm of 0.4 μm SnS thin film thickness is optimum and favours the attainment of the threshold voltage for a field effect transistor operation hence the application of SnS thin film as a semiconductor channel layer in a field effect transistor.


1990 ◽  
Vol 5 (1) ◽  
pp. 151-160 ◽  
Author(s):  
K. T. Miller ◽  
F. F. Lange ◽  
D. B. Marshall

Dense polycrystalline thin films of ZrO2 (3 and 8 mol % Y2O3) were produced by the pyrolysis of zirconium acetate precursor films, which were deposited on single crystal Al2O3 substrates by spin-coating aqueous solutions of zirconium acetate and yttrium nitrate. Dense films were heat treated to encourage grain growth. With grain growth, these films broke into islands of ZrO2 grains. Identical areas were examined after each heat treatment to determine the mechanism that causes the polycrystalline film to uncover the substrate. Two mechanisms were detailed: (a) for a composition which inhibited grain growth and produced a polycrystalline film with very small grains, the smallest grains would disappear to uncover the substrate, and (b) for a composition which did not inhibit grain boundary motion, larger grains grew by enveloping a smaller grain and then developed more spherical surface morphologies, uncovering the substrate at three grain junctions. In both cases, the breakup phenomenon occurred when the average grain size was larger than the film thickness. Thermodynamic calculations show that this breakup lowers the free energy of the system when the grain-size-to-film-thickness ratio exceeds a critical value. These calculations also predict the conditions needed for polycrystalline thin film stability.


1990 ◽  
Vol 202 ◽  
Author(s):  
Z. G. Xiao ◽  
G. A. Rozgonyi ◽  
C. A. Canovai ◽  
C. M. Osburn

ABSTRACTThe agglomeration of Co silicide films formed on Si substrates processed with different Co film thickness was investigated by TEM, XRD, and four-point-probe measurements. It was found that thermal grooving always accompanies the film formation, while islanding can occur during high temperature thermal stability testing, or during formation of very thin films at moderate temperatures. In addition to whole film agglomeration, partial agglomeration on the top of the film has been observed, which is prominent and important for thin films. A theoretical model of agglomeration for silicide films is presented, which shows that when the ratio of grain size to film thickness is smaller than a critical value, the film will not lose its continuity. Also, grain boundary migration was found to have a suppressing effect on thermal grooving. Both a small grain size and a low grain boundary energy are shown to be favorable for improving the thermal stability.


Sign in / Sign up

Export Citation Format

Share Document