scholarly journals Microstructural Evolution of H-BN Matrix Composite Ceramics With Amorphous La2O3-Al2O3-SiO2 Glass Phase During Hot Pressing

2020 ◽  
Author(s):  
Baofu Qiu ◽  
Xiaoming Duan ◽  
Zhuo Zhang ◽  
Chen Zhao ◽  
Bo Niu ◽  
...  

Abstract BN-La2O3-Al2O3-SiO2 composite ceramics were fabricated by hot press sintering using h-BN, La2O3, Al2O3 and amorphous SiO2 as the raw materials. The effects of sintering temperature on the microstructural evolution, bulk density, apparent porosity, and mechanical properties of h-BN composite ceramics were investigated. The results indicated that ternary La2O3-Al2O3-SiO2 liquid phase was formed during sintering process, which provided an environment for the growth of h-BN grains. With increasing sintering temperature, the cristobalite phase precipitation and h-BN grain growth occurred at the same time, which had the significant influence on the densification and mechanical properties of h-BN composite ceramics. The best mechanical properties of BN-La2O3-Al2O3-SiO2 composite ceramics were obtained under sintering temperature of 1700 °C, and the elastic modulus, flexural strength, and fracture toughness were 80.5 GPa, 266.4 MPa and 3.25 MPa·m1/2, respectively.

2020 ◽  
Author(s):  
Baofu Qiu ◽  
Xiaoming Duan ◽  
Zhuo Zhang ◽  
Chen Zhao ◽  
Bo Niu ◽  
...  

Abstract BN/La-Al-Si-O composite ceramics were fabricated by hot-pressed sintering using h-BN, La2O3, Al2O3 and amorphous SiO2 as the raw materials. The effects of sintering temperature on the microstructural evolution, bulk density, apparent porosity, and mechanical properties of h-BN composite ceramics were investigated. The results indicated that La-Al-Si-O liquid phase was formed during sintering process, which provided an environment for the growth of h-BN grains. With increasing sintering temperature, the cristobalite phase precipitation and h-BN grain growth occurred at the same time, which had the significant influence on the densification and mechanical properties of h-BN composite ceramics. The best mechanical properties of BN/La-Al-Si-O composite ceramics were obtained under sintering temperature of 1700 °C, and the elastic modulus, flexural strength, and fracture toughness were 80.5 GPa, 266.4 MPa and 3.25 MPa·m1/2, respectively.


Author(s):  
Baofu Qiu ◽  
Xiaoming Duan ◽  
Zhuo Zhang ◽  
Chen Zhao ◽  
Bo Niu ◽  
...  

AbstractBN/La-Al-Si-O composite ceramics were fabricated by hot-pressed sintering using hexagonal boron nitride (h-BN), lanthanum oxide (La2O3), aluminia (Al2O3), and amorphous silica (SiO2) as the raw materials. The effects of sintering temperature on microstructural evolution, bulk density, apparent porosity, and mechanical properties of the h-BN composite ceramics were investigated. The results indicated that La-Al-Si-O liquid phase was formed during sintering process, which provided an environment for the growth of h-BN grains. With increasing sintering temperature, the cristobalite phase precipitation and h-BN grain growth occurred at the same time, which had a significant influence on the densification and mechanical properties of h-BN composite ceramics. The best mechanical properties of BN/La-Al-Si-O composite ceramics were obtained under the sintering temperature of 1700 °C. The elastic modulus, flexural strength, and fracture toughness were 80.5 GPa, 266.4 MPa, and 3.25 MPa·m1/2, respectively.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


2013 ◽  
Vol 589-590 ◽  
pp. 572-577 ◽  
Author(s):  
Hua He Liu ◽  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Ya Cong Chai

Al2O3-MgO, Al2O3-Y2O3 and Al2O3-MgO-Y2O3 composite ceramics were fabricated respectively by hot-press sintering technique. With the analysis of the mechanical properties and microstructure, it was found that single additive MgO could be more favorable to the grains’ refinement and densification than Y2O3; the composite additive including both MgO and Y2O3 was better than single additive MgO or Y2O3, because their interactions could improve the mechanical properties of the Al2O3 ceramics; The sintering temperature could be reduced by adding the suitable amount of composite additives.


2010 ◽  
Vol 105-106 ◽  
pp. 16-19 ◽  
Author(s):  
Hong Xia Lu ◽  
Zhang Wei ◽  
Rui Zhang ◽  
Hong Liang Xu ◽  
Hai Long Wang ◽  
...  

Nano-Fe particles coating Al2O3 composite powders were prepared by heterogeneous precipitation method with nanometer -Al2O3 and Fe(NO3)3•9H2O as raw materials. The composite powders were analyzed by DSC-TG, XRD,SEM and Zeta potential. Results showed that Fe coating Al2O3 nanometer composite powders were obtained in the condition of being sintered at 500°C for 30min and reduced at 700°C for 1h in H2. The coating Fe nanometer particles are in the shape of sphericity with diameter about 30nm and the dispersion of the powders is uniform. Al2O3/Fe composite ceramics were obtained by hot-pressing (30MPa). The mechanical properties of the composite were investigated after hot press at different temperatures. With the increasing of Fe content in composite ceramics, the hardness of the composite is decreased. Fracture toughness of 10mol%Fe content is 5.62MPa after sintered at 1400°C, which is increasing 57% high than that of monolithic Al2O3 ceramics.


2013 ◽  
Vol 457-458 ◽  
pp. 152-155
Author(s):  
Wen Zheng Dong ◽  
Qi Quan Lin ◽  
Tao Jiang ◽  
Zhi Gang Wang

The sintering behavior and the resulting of cermet are influenced not only by the characteristics and impurities of the raw materials but also are found to be dependent on the thermal history during the fabrication process. Our work is concerned with the effect of sintering temperature on the mechanical properties of 17Ni/(10NiO-NiFe2O4) cermet. The nickel ferrite based cermet were prepared by hot-press sintering technology at 16MPa and sintered at temperatures ranging from 900 to 1200°C. The microstructure, phase compositions and mechanical properties were studied by SEM, XRD and three point bending strength tests respectively. It has been found that, the relative density, hardness and bending strength of NiFe2O4 based cermet have a great influence upon the sintering temperature, and an optimal sintering temperature, e.g. 1100°C is chosen through our experiments. The highest bending strength of 125.89Mpa could be obtained under the sintering temperature of 1100°C. Meanwhile, the thermal shock resistance increases as the sintering temperature increases.


2013 ◽  
Vol 589-590 ◽  
pp. 590-593 ◽  
Author(s):  
Min Wang ◽  
Jun Zhao

In order to investigate the effects of TiN content on Al2O3/TiN ceramic material (ATN), the ATN ceramic materials were prepared of TiN content in 30%, 40%, 50%, 60% in the condition of hot press sintering. The sintering temperature is 1700°C, the sintering press is 32MPa, and the holding time are 5min, 10min, 15min. The effects of TiN content on mechanical properties and microstructure of ATN ceramic materials were investigated by analyzing the bending strength, hardness, fracture toughness. The results show that ATN50 has the best mechanical property, its bending strength is 659.41MPa, vickers hardness is 13.79GPa, fracture toughness is 7.06MPa·m1/2. It is indicated that the TiN content has important effect on microstructure and mechanical properties of ATN ceramic materials.


2008 ◽  
Vol 368-372 ◽  
pp. 1764-1766 ◽  
Author(s):  
Yu Jin Wang ◽  
Lei Chen ◽  
Tai Quan Zhang ◽  
Yu Zhou

The ZrC-W composites with iron as sintering additive were fabricated by hot-press sintering. The densification, microstructure and mechanical properties of the composites were investigated. The incorporation of Fe beneficially promotes the densification of ZrC-W composites. The relative density of the composite sintered at 1900°C can attain 95.3%. W2C phase is also found in the ZrC-W composite sintered at 1700°C. The content of W2C decreases with the increase of sintering temperature. However, W2C phase is not identified in the composite sintered at 1900°C. The flexural strength and fracture toughness of the composites are strongly dependent on sintering temperature. The flexural strength and fracture toughness of ZrC-W composite sintered at optimized temperature of 1800°C are 438 MPa and 3.99 MPa·m1/2, respectively.


2007 ◽  
Vol 336-338 ◽  
pp. 2363-2365
Author(s):  
You Feng Zhang ◽  
Yu Zhou ◽  
De Chang Jia ◽  
Qing Chang Meng

Effects of different sintering methods such as pressureless sintering and hot press sintering on relative density and microstructure of the Al2O3p/LiTaO3 (ALT) composite ceramics were investigated to obtain a preferable sintering process. Relative densities of all ALT composites are below 90% when sintered with the cold isostatical pressing followed by pressureless sintering at temperatures of 1250 to 1350°C. The relative densities and microstructure of ALT composite ceramics with the hot press sintering process in a N2 atmosphere at 1150 and 1300°C were investigated. The relative density of ALT composite hot pressed at 1150°C is only 77%, and almost theoretical density at 1300°C. This indicates that sintering pressure plays an important role in the densification of ALT composite ceramics in temperature range of 1150 to 1350°C. Investigation on morphologies of the composites shows that the Al2O3 particles distributed along grain boundaries of LiTaO3, which leads to a fine-grained microstructure in the ALT composite ceramics


2011 ◽  
Vol 295-297 ◽  
pp. 581-584
Author(s):  
Li Qiang Zhang ◽  
Ping Huo ◽  
Yong Huang ◽  
Peng Li ◽  
Rong Yang

In laboratory condition, industrial zirconia and alumina were used as raw materials, whose particle size was controlled by ultrafine treatment of mechanical milling. The effects of different firing temperatures and soaking times on mechanical properties of Al2O3-based composite ceramics liner were researched. And the microstructure of samples was studied by scanning electron microscopy (SEM). The results indicate that mechanical properties of samples kept 3 h at sintering temperature of 1600°C with adding 30 wt% zirconia are the best.


Sign in / Sign up

Export Citation Format

Share Document