scholarly journals Experimental Investigation of Double-End Pumped Tm, Ho: GdVO4 Laser at Cryogenic Temperature

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 798
Author(s):  
Yanqiu Du ◽  
Tongyu Dai ◽  
Hui Sun ◽  
Hui Kang ◽  
Hongyang Xia ◽  
...  

We describe comparatively cryogenically cooled Tm, Ho: GdVO4 lasers with an emission wavelength of 2.05 μm under continuous wave and pulse operating mode. By varying the transmittance of output couplers to be 0.40 for a continuous wave laser, the maximum output power of 7.4 W was generated with a slope efficiency of 43.3% when the absorbed pump power was increased to 18.7 W. For passively Q-switched lasers, the output characteristics were researched through altering pump mode radius. When the pump mode radius focused into the Tm, Ho: GdVO4 center equaled near 600 μm, the peak power was increased to be the maximum value of 9.9 kW at the absorbed pump power of 11.8 W. The pulse energy of 0.39 mJ was achieved at the same absorbed pump power with repetition of 5.7 kHz.

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7324
Author(s):  
Lei Guo ◽  
Yaling Yang ◽  
Ruihua Wang ◽  
Baitao Zhang ◽  
Tao Li ◽  
...  

We report the characteristics of a diode-end-pumped, high-repetition-rate, acoustic-optic (AO) Q-switched Tm:YLF laser operating from 5 kHz to 10 kHz. In the continuous-wave (CW) regime, a maximum average output power of 8.5 W was obtained with a slope efficiency of 30.7%. Under the AO Q-switching regime, a maximum output power of 7.32 W was obtained at a repetition frequency of 5 kHz with a pulse width of 68 ns and a pulse energy of 1.4 mJ, corresponding to a peak power of 21.5 kW. A time-dependent rate equation model is introduced to theoretically analyze the results obtained in the experiment, in which the cross-relaxation phenomenon, upconversion losses and ground-state depletion are taken into account. Additionally, the evolution processes of population inversion density and intracavity photon number density with time are also presented. The theoretical results well predict the dependence of laser output characteristics of Tm:YLF crystal on the incident pump powers.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Xin Li ◽  
Haikun Zhang ◽  
Peiji Wang ◽  
Guiqiu Li ◽  
Shengzhi Zhao ◽  
...  

The graphene oxide (GO) thin film has been obtained by mixture of GO spin coated on substrate of indium tin oxide (ITO). The experiment has shown that continuous-wave laser is modulated when the graphene oxide saturable absorber (GO-SA) is employed in the 1064 nm laser cavity. The shortest pulse width is 108 ns at the pump power of 5.04 W. Other output laser characteristics, such as the threshold pump power, the repetition rate, and the peak power, have also been measured. The results have demonstrated that graphene oxide is an available saturable absorber for 1064 nm passive Q-switching laser.


Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025801
Author(s):  
Xiangrui Liu ◽  
Zhuang Li ◽  
Chengkun Shi ◽  
Bo Xiao ◽  
Run Fang ◽  
...  

Abstract We demonstrated 22 W LD-pumped high-power continuous-wave (CW) deep red laser operations at 718.5 and 720.8 nm based on an a-cut Pr3+:YLF crystal. The output power of both polarized directions reached the watt-level without output power saturation. A single wavelength laser operated at 720.8 nm in the π-polarized direction was achieved, with a high output power of 4.5 W and high slope efficiency of approximately 41.5%. To the best of our knowledge, under LD-pumped conditions, the laser output power and slope efficiency are the highest at 721 nm. By using a compact optical glass plate as an intracavity etalon, we suppressed the π-polarized 720.8 nm laser emission. And σ-polarized single-wavelength laser emission at 718.5 nm was achieved, with a maximum output power of 1.45 W and a slope efficiency of approximately 17.8%. This is the first time that we have achieved the σ-polarized laser emission at 718.5 nm generated by Pr3+:YLF lasers.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Zhipeng Qin ◽  
Guoqiang Xie ◽  
Jian Zhang ◽  
Jingui Ma ◽  
Peng Yuan ◽  
...  

We report on a continuous-wave (CW) and passively Q-switched Er:Y2O3 ceramic laser in mid-infrared spectral region. In the CW regime, a maximum output power of 2.07 W is achieved at 2717.3 nm with a slope efficiency of 13.5%. Stable passive Q-switching of the Er:Y2O3 ceramic laser is demonstrated based on semiconductor saturable absorber mirror. Under an absorbed pump power of 12.4 W, a maximum average output power of 223 mW is generated with a pulse energy of 1.7 μJ and a pulse width of 350 ns at 2709.3 nm.


2017 ◽  
Vol 46 (10) ◽  
pp. 1003006
Author(s):  
孙 浩 Sun Hao ◽  
周大勇 Zhou Dayong ◽  
张宏超 Zhang Hongchao ◽  
陆 健 Lu Jian

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Min Zhang ◽  
Junlei Wang

A rigid circular cylinder with two piezoelectric beams attached on has been tested through vortex-induced vibrations (VIV) and wake-induced vibrations (WIV) by installing a big cylinder fixed upstream, in order to study the influence of the different flow-induced vibrations (FIV) types. The VIV test shows that the output voltage increases with the increases of load resistance; an optimal load resistance exists for the maximum output power. The WIV test shows that the vibration of the small cylinder is controlled by the vortex frequency of the large one. There is an optimal gap of the cylinders that can obtain the maximum output voltage and power. For a same energy harvesting device, WIV has higher power generation capacity; then the piezoelectric output characteristics can be effectively improved.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 861
Author(s):  
Lina Zhao ◽  
Luyang Tong ◽  
Fangxin Cai ◽  
Ye Yuan ◽  
Yangjian Cai

We present a high-power, wavelength-tunable picosecond Yb3+: CaGdAlO4 (Yb:CALGO) laser based on MgO-doped lithium niobate (MgO:LN) nonlinear mirror mode locking. The output wavelength in the continuous wave (CW) regime is tunable over a 45 nm broad range. Mode locking with a MgO:LN nonlinear mirror, the picosecond laser is tunable over 23 nm from 1039 to 1062 nm. The maximum output power of the mode-locked laser reaches 1.46 W, and the slope efficiency is 18.6%. The output pulse duration at 1049 nm is 8 ps. The laser repetition rate and bandwidth are 115.5 MHz and 1.7 nm, respectively.


Author(s):  
Chao Wang ◽  
Wenxue Li ◽  
Xianghui Yang ◽  
Dongbi Bai ◽  
Kangwen Yang ◽  
...  

Abstract A composite transparent YAG/Yb:YAG/YAG ceramic was prepared by a non-aqueous tape-casting method. An optical transmittance of 82% was obtained at visible wavelength and around 1100 nm. A low-threshold, broadband tunable continuous-wave (CW) laser at 1031 nm was further demonstrated from the ceramic sample, which was pumped by a 974 nm fiber-pigtailed laser diode. The threshold pump power was 0.45 W and the maximum output power was 3.2 W, corresponding to a slope efficiency of 20.4%. By inserting an SF57 prism in the laser cavity, the output wavelength could be tuned continuously from 1021 to 1058 nm.


2020 ◽  
Author(s):  
Ke Wang ◽  
Mingyao Gao ◽  
Shuhui Yu ◽  
Jian Ning ◽  
Zhenda Xie ◽  
...  

Abstract We demonstrate a compact, high-efficiency and widely tunable intracavity singly resonant optical parametric oscillator (IC-OPO) based on multichannel periodically-poled lithium niobate (PPLN). The IC-OPO is composed of 808 nm pump laser diode (LD), Nd:YVO4 laser and linear OPO. The continuous-wave (CW) mid-infrared (MIR) output laser is tunable from 2.25 μm to 4.79 μm. The maximum output power exceeds 1.08 W at 3.189 μm at 9.1 W LD pump power and the conversion efficiency is 11.88 %. We also build up a prototype with volume of Wmm3 and its total weight is less than 2 Kg. The measured power stability is 1.3 % Root Meat Square (RMS) for a 3 h duration under simulated high temperature conditions of 40 ℃. RMS is 2.6 % for a 4 h duration when simulated temperature is - 40 ℃.


2020 ◽  
Vol 11 (4) ◽  
pp. 264-271
Author(s):  
O. P. Dernovich ◽  
N. V. Gusakovа ◽  
V. E. Kisel ◽  
A. V. Kravtsov ◽  
S. A. Guretsky ◽  
...  

2 μm lasers are in demand for a number of practical applications, such as environmental monitoring, remote sensing, medicine, material processing, and are also used as a pump sources for optical parametric generators. Crystals of double potassium tungstates doped with ions of rare-earth elements were shown to be promising materials both for  the  creation  of  classical  solid-state  lasers  and  waveguide  lasers. The aim of this work was to develop a tunable pump laser in the spectral region of 1.9 µm based on double tungstate crystals doped with thulium ions and to study the lasing characteristics of a Ho:KY(WO4)2 crystal and a Ho:KGdYbY(WO4)2 single-crystal epitaxial layer under in-band pumping.With a Ho(1at.%):KY(WO4)2  crystal, continuous wave low-threshold lasing with an output power of 85 mW with a slope efficiency of 54 % at 2074 nm was achieved. For the first time to our knowledge, continuous wave laser  generation  in  a  waveguide  configuration  is  realized  in  a  single-crystal  layer of potassium tungstate doped with holmium ions grown by liquid-phase epitaxy. The maximum output power at a wavelength of 2055 nm was 16.5 mW.


Sign in / Sign up

Export Citation Format

Share Document