scholarly journals Effect of In and Pr on the Microstructure and Properties of Low-Silver Filler Metal

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 929
Author(s):  
Jie Wu ◽  
Songbai Xue ◽  
Peng Zhang

The novel low-silver 12AgCuZnSn filler metals containing In and Pr were used for flame brazing of copper and 304 stainless steel in this study. The effects of In and Pr content on the melting temperature, wettability, mechanical properties and microstructure of 12AgCuZnSn filler metal were analyzed. The results indicate that the solidus and liquidus temperatures of filler metals decrease with the addition of In. Trace amounts of Pr have little impact on the melting temperature of the low-silver filler metals. In addition, the spreading area of filler metals on copper and 304 stainless steel is improved. The highest shear strength of brazed joint is 427 MPa when the content of In and Pr are 2 wt.% and 0.15 wt.%, respectively. Moreover, it is observed that the trace amount of Pr significantly refines the microstructure of brazed joint matrix. A bright Pr3Cu4Sn4 phase is found in filler metal and brazing seam when the contents of In and Pr are 5 wt.% and 0.5 wt.%, respectively.

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 557
Author(s):  
Jie Wu ◽  
Songbai Xue ◽  
Zhen Yao ◽  
Weimin Long

The effect of different In contents on the melting characteristics, mechanical properties, and microstructure of 12Ag–Cu–Zn–Sn filler metal was investigated in this paper, and flame brazing of 304 stainless steel and copper plates was done using the 12Ag–Cu–Zn–Sn–xIn filler metal. The results indicate that adding appropriate amount of In can evidently decrease the solidus and liquidus temperatures and improve the wettability of the low silver based filler metals. In addition, the shear strength of 304 stainless steel and copper plates joint brazed by 12Ag–Cu–Zn–Sn–1In are satisfactory due to the solution strength effect, and scanning electron microscopy examination of the braze-zone revealed that more relatively sound joints were obtained when brazing was done with 12Ag–Cu–Zn–Sn–xIn filler metal than with Indium free one; its performance is comparable to that of the joint brazed with the 20Ag–Cu–Zn–Sn filler metal, having a remarkable silver-saving effect.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 198 ◽  
Author(s):  
Peng Xue ◽  
Yang Zou ◽  
Peng He ◽  
Yinyin Pei ◽  
Huawei Sun ◽  
...  

The microstructure and properties of a Cu/304 stainless steel dissimilar metal joint brazed with a low silver Ag16.5CuZnSn-xGa-yCe braze filler after aging treatment were investigated. The results indicated that the addition of Ce could reduce the intergranular penetration depth of the filler metal into the stainless steel during the aging process. The minimum penetration depth in the Ag16.5CuZnSn-0.15Ce brazed joint was decreased by 48.8% compared with the Ag16.5CuZnSn brazed joint. Moreover, the shear strength of the brazed joint decreased with aging time while the shear strength of the AgCuZnSn-xGa-yCe joint was still obviously higher than the Ag16.5CuZnSn joint after a 600 h aging treatment. The fracture type of the Ag16.5CuZnSn-xGa-yCe brazed joints before aging begins ductile and turns slightly brittle during the aging process. Compared to all the results, the Ag16.5CuZnSn-2Ga-0.15Ce brazed joints show the best performance and could satisfy the requirements for cost reduction and long-term use.


2018 ◽  
Vol 37 (6) ◽  
pp. 597-602 ◽  
Author(s):  
X. P. Xu ◽  
Q. M. Liu ◽  
C. Z. Xia ◽  
J. S. Zou

AbstractSi3N4 ceramics and 304 stainless steel were joined by the Cu/Ag-Cu/Ti laminated filler metal. Interfacial microstructure of brazed joint and effect of brazing temperature and thickness of Cu foil on mechanical properties were studied in this paper. Research results showed that the interfacial microstructure of the brazed joint might be 304 stainless steel/TiFe2/Ag-Cu eutectic+Cu(s,s)/Cu(s,s)/Cu(s,s)+Ag-Cu eutectic/Cu3Ti+TiN/Si3N4 ceramics. With the increasing of the brazing temperature, four-point bending strength of the brazed joint initially increased, then decreased. The bending strength reached the maximum value of 53 MPa at 1153 K when the thickness of Cu foil was 500 μm. The bending strength reached the maximum value of 57 MPa with 1 mm thickness Cu interlayer under the brazing temperature of 1153 K.


2005 ◽  
Vol 297-300 ◽  
pp. 2767-2771
Author(s):  
Ikuo Shohji ◽  
Satoshi Takayama ◽  
Takanori Nakazawa ◽  
Ken Matsumoto ◽  
Masanori Hikita

In the brazed joint of stainless steel with BNi-2 filler, brittle Cr-B compounds form in the vicinity of the centerline of the brazed joint. These compounds cause a decrease in joint strength. In this study, BNi-2 filler supplemented with Cr powder has been used in brazing stainless steel in orde r to disperse brittle Cr-B compounds uniformly in the brazed joint and improve joint strength. The mechanical properties and microstructures of the brazed joints were investigated. Moreover, a comp arison of the brazed joint with that using the BNi-2 filler was conducted.


2012 ◽  
Vol 445 ◽  
pp. 759-764 ◽  
Author(s):  
Seyed Ali Asghar Akbari Mousavi ◽  
P. Sherafati ◽  
M.M. Hoseinion

In this study the wettability, microstructure and mechanical properties of joining between cemented carbide and CK35 steel which brazed with two filler metals, L-Ag40Cd and L-Ag34Cd, were investigated. Wettability test shows that with increase of brazing time, the contact angle decreases and the best situation was resulted in the 20 minute brazing. Microscopic investigation of the brazed area with both filler metal shows that there is a copper enriched primary phase and eutectic microstructure in the silver enriched matrix which composed of copper enriched particles. The amount and the dispersion of precipitates are depended upon type of filler metal and brazing temperature. The results show that brazing with L-Ag34Cd filler metal at 800 °C exhibit superior shear strength in the level of 108 MPa.


Sign in / Sign up

Export Citation Format

Share Document