scholarly journals Microstructure and Properties of Si3N4 Ceramics and 304 Stainless Steel Brazed Joint with Cu/Ag-Cu/Ti Laminated Filler Metal

2018 ◽  
Vol 37 (6) ◽  
pp. 597-602 ◽  
Author(s):  
X. P. Xu ◽  
Q. M. Liu ◽  
C. Z. Xia ◽  
J. S. Zou

AbstractSi3N4 ceramics and 304 stainless steel were joined by the Cu/Ag-Cu/Ti laminated filler metal. Interfacial microstructure of brazed joint and effect of brazing temperature and thickness of Cu foil on mechanical properties were studied in this paper. Research results showed that the interfacial microstructure of the brazed joint might be 304 stainless steel/TiFe2/Ag-Cu eutectic+Cu(s,s)/Cu(s,s)/Cu(s,s)+Ag-Cu eutectic/Cu3Ti+TiN/Si3N4 ceramics. With the increasing of the brazing temperature, four-point bending strength of the brazed joint initially increased, then decreased. The bending strength reached the maximum value of 53 MPa at 1153 K when the thickness of Cu foil was 500 μm. The bending strength reached the maximum value of 57 MPa with 1 mm thickness Cu interlayer under the brazing temperature of 1153 K.

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2226 ◽  
Author(s):  
Xiangping Xu ◽  
Yi Wang ◽  
Jiasheng Zou ◽  
Chunzhi Xia

Si3N4 ceramics and 304 stainless steel were brazed by Ti40Zr25B0.2Cu amorphous solder, and the interfacial microstructure of brazed joint Si3N4 ceramics/Ti40Zr25B0.2Cu/Cu/Ti40Zr25B0.2Cu/304 stainless steel was analyzed. The mechanical properties of the brazed joint were overtly affected by the brazing temperature and Cu foil thickness. The results revealed that the interface structure of the brazed joint might be 304 stainless steel/FeTi/Cu-Zr+Cu-Ti+Fe-Ti/Cu(s,s)/Cu-Zr+Cu-Ti+Fe-Ti/Ti-Si+Zr-Si/TiN/Si3N4 ceramics. The four-point bending strength of the brazed joint decreased sharply as the brazing temperature increased and reached a maximum of 76 MPa at 1223 K. Furthermore, as the Cu foil thickness was increased from 500 μm to 1000 μm, the joint strength rose to 90 MPa at 1223 K.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 198 ◽  
Author(s):  
Peng Xue ◽  
Yang Zou ◽  
Peng He ◽  
Yinyin Pei ◽  
Huawei Sun ◽  
...  

The microstructure and properties of a Cu/304 stainless steel dissimilar metal joint brazed with a low silver Ag16.5CuZnSn-xGa-yCe braze filler after aging treatment were investigated. The results indicated that the addition of Ce could reduce the intergranular penetration depth of the filler metal into the stainless steel during the aging process. The minimum penetration depth in the Ag16.5CuZnSn-0.15Ce brazed joint was decreased by 48.8% compared with the Ag16.5CuZnSn brazed joint. Moreover, the shear strength of the brazed joint decreased with aging time while the shear strength of the AgCuZnSn-xGa-yCe joint was still obviously higher than the Ag16.5CuZnSn joint after a 600 h aging treatment. The fracture type of the Ag16.5CuZnSn-xGa-yCe brazed joints before aging begins ductile and turns slightly brittle during the aging process. Compared to all the results, the Ag16.5CuZnSn-2Ga-0.15Ce brazed joints show the best performance and could satisfy the requirements for cost reduction and long-term use.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 929
Author(s):  
Jie Wu ◽  
Songbai Xue ◽  
Peng Zhang

The novel low-silver 12AgCuZnSn filler metals containing In and Pr were used for flame brazing of copper and 304 stainless steel in this study. The effects of In and Pr content on the melting temperature, wettability, mechanical properties and microstructure of 12AgCuZnSn filler metal were analyzed. The results indicate that the solidus and liquidus temperatures of filler metals decrease with the addition of In. Trace amounts of Pr have little impact on the melting temperature of the low-silver filler metals. In addition, the spreading area of filler metals on copper and 304 stainless steel is improved. The highest shear strength of brazed joint is 427 MPa when the content of In and Pr are 2 wt.% and 0.15 wt.%, respectively. Moreover, it is observed that the trace amount of Pr significantly refines the microstructure of brazed joint matrix. A bright Pr3Cu4Sn4 phase is found in filler metal and brazing seam when the contents of In and Pr are 5 wt.% and 0.5 wt.%, respectively.


2018 ◽  
Vol 25 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Yi Zhou ◽  
Chunzhi Xia ◽  
Jun Yang ◽  
Xiangping Xu ◽  
Jiasheng Zou

AbstractW75-Cu and W55-Cu alloys were brazed with a Cu-based filler metal under the process parameters of a brazing temperature of 1060°C and a holding time of 30 min in a vacuum furnace with a vacuum level >6×10-3Pa. The microstructure, element distribution, phase constituents, four-point bending strength, and fracture morphology of the brazed joint were studied with a series of standard methods. The results indicated that the main microstructure of the brazing seam region was a Cu-based solid solution of Mn and Co dissolved in the Cu phase. The element Cu and a little element W from two sides of the base metals transited into the brazing seam region, and the elements Cu, Mn, and Co contained in the brazing filler metal diffused into the interface or even substrates. The main phases that existed in the brazed joint were Cu-rich phase Cu(Mn,Co), simple substance of W, simple substance of Cu, and trace amounts of Cu0.4W0.6. The four-point bending strength was about 950 MPa, and fracture occurred at the interface near the W75-Cu alloy side. The fracture morphology of the W75-Cu/W55-Cu brazed joint was identified as mixed ductile-brittle.


2015 ◽  
Vol 22 (3) ◽  
pp. 245-250 ◽  
Author(s):  
Qiuhui Liang ◽  
Chunzhi Xia ◽  
Xiangping Xu ◽  
Jiasheng Zou

AbstractThis thesis is a discussion on obtaining a vacuum brazing joint of W-Cu alloy and 18-8 stainless steel with Cu-Mn-Co filler metal under the process parameter of a brazing temperature of 1060°C and holding time of 1 h. Four-point bending strength was tested at room temperature. Microstructure, microhardness, and element distribution near the interface of the brazed seam were observed via micro sclerometer, scanning electron microscope (SEM), and energy disperse spectroscopy (EDS) methods. Finally, analysis of the existence for phase composition near the interface was conducted using X-ray diffraction. Corresponding to a four-point bend strength of 780 MPa, there was a plain-interface, dense microstructure without obvious microdefects that formed. Microhardness values increased near the interface of the brazed joint and decreased gradually to the center of the brazed seam. Element distribution indicated that elements (Cu, Mn, Co) from the filler metal diffused into the interface or even substrates, and Fe and Cu element, together with a little of W element, from the substrates dissolved into the brazed seam region. Fracture morphology of the W-Cu/18-8 steel joint was identified as a mixed feature of fracture type. Moreover, the brazing seam contained mainly a Cu-rich phase, W0.4Cu0.6, α-Fe, and simple substance of W, together with a little of Co0.7Fe0.3.


2010 ◽  
Vol 1276 ◽  
Author(s):  
F. García-Vázquez ◽  
I. Guzmán-Flores ◽  
A. Garza ◽  
J. Acevedo

AbstractBrazing is a unique method to permanently join a wide range of materials without oxidation. It has wide commercial application in fabricating components. This paper discusses results regarding the brazing process of 304 stainless steel. The experimental brazing is carried out using a nickel-based (Ni-11Cr-3.5Si-2.25B-3.5Fe) filler alloy. In this process, boron and silicon are incorporated to reduce the melting point, however they form hard and brittle intermetallic compounds with nickel (eutectic phases) which are detrimental to the mechanical properties of brazed joints. This investigation deals with the effects of holding time and brazing temperature on the microstructure of joint and base metal, intermetallic phases formation within the brazed joint as well as measurement of the tensile strength. The results show that a maximum tensile strength of 464 MPa is obtained at 1120°C and 4 h holding time. The shortest holding times will make boron diffuse insufficiently and generate a great deal of brittle boride components.


2021 ◽  
Vol 1016 ◽  
pp. 997-1002
Author(s):  
Hikaru Nagata ◽  
Masa Ono ◽  
Yasuyuki Miyazawa ◽  
Yuji Hayashi ◽  
Yoshio Bizen

To clarify the effect of the acid solution type on corrosion resistance, the corrosion behavior of stainless steel brazed joints in HCl aqueous solution was evaluated through electrochemical measurements. Anodic polarization curves of a ferritic stainless-steel base metal, Ni-based brazing filler metals, and a brazed joint were recorded. In addition, in situ observations were conducted to observe the corrosion behavior of each structure of the brazed joint. Corrosion potentials of the brazing filler metal were lower than that of the base metal. In situ observations of the brazed joint revealed the order of corrosion in aqueous hydrochloric acid. According to the electrochemical measurements, under an actual corrosive environment, the brazing filler metal can function as an anode and selectively corrode. In addition, the anodic polarization curve of the brazed joint showed values between those of the polarization curves of the brazing filler metal and the base metal, indicating that the corrosion resistance could be electrochemically evaluated in HCl aqueous solution.


2017 ◽  
Vol 115 (1) ◽  
pp. 115 ◽  
Author(s):  
Gopinath Thirunavukarasu ◽  
Sukumar Kundu ◽  
Tapas Laha ◽  
Deb Roy ◽  
Subrata Chatterjee

An investigation was carried out to know the extent of influence of bonding-time on the interface structure and mechanical properties of diffusion bonding (DB) of TiA|Cu|SS. DB of Ti6Al4V (TiA) and 304 stainless steel (SS) using pure copper (Cu) of 200-μm thickness were processed in vacuum using 4-MPa bonding-pressure at 1123 K from 15 to 120 min in steps of 15 min. Preparation of DB was not possible when bonding-time was less than 60 min as the bonding at Cu|SS interface was unsuccessful in spite of effective bonding at TiA|Cu interface; however, successful DB were produced when the bonding-time was 60 min and beyond. DB processed for 60 and 75 min (classified as shorter bonding-time interval) showed distinctive characteristics (structural, mechanical, and fractural) as compared to the DB processed for 90, 105, and 120 min (classified as longer bonding-time interval). DB processed for 60 and 75 min exhibited layer-wise Cu–Ti-based intermetallics at TiA|Cu interface, whereas Cu|SS interface was completely free from reaction products. The layer-wise structure of Cu–Ti-based intermetallics were not observed at TiA|Cu interface in the DB processed for longer bonding-time; however, the Cu|SS interface had layer-wise ternary intermetallic compounds (T1, T2, and T3) of Cu–Fe–Ti-based along with σ phase depending upon the bonding-time chosen. Diffusivity of Ti-atoms in Cu-layer (DTi in Cu-layer) was much greater than the diffusivity of Fe-atoms in Cu-layer (DFe in Cu-layer). Ti-atoms reached Cu|SS interface but Fe-atoms were unable to reach TiA|Cu interface. It was observed that DB fractured at Cu|SS interface when processed for shorter bonding-time interval, whereas the DB processed for longer bonding-time interval fractured apparently at the middle of Cu-foil region predominantly due to the existence of brittle Cu–Fe–Ti-based intermetallics.


2017 ◽  
Vol 728 ◽  
pp. 60-65
Author(s):  
Thanaporn Thonondaeng ◽  
Ghit Laungsopapun ◽  
Kittichai Fakpan ◽  
Krittee Eidhed

Single pass overlay welding of the ERNiCu-7 filler metal on the commercial pure titanium grade 2 and the 304 stainless steel using the gas tungsten arc welding (GTAW) process was studied. The ERNiCu-7 filler metal was overlay welded on the base metals with varying welding currents; it was 30A, 40A and 50A for the CP-Ti base metal and 50A, 60A and 70A for the 304SS base metal. The experimental results showed that the overlay CP-Ti welded-specimen, increasing of welding current increased bead width and decreased depth of penetration of weldment. While for the 304SS welded-specimen, increasing of welding current increased both bead width and depth of penetration. Suitable heat inputs to achieve good geometry of weldment for overlay welding were 348J/mm for CP-Ti welded-specimen and 558J/mm for 304SS welded-specimen.


Sign in / Sign up

Export Citation Format

Share Document