scholarly journals The Influence of Fly Ash Content on the Compressive Strength of Cemented Sand and Gravel Material

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1426
Author(s):  
Qihui Chai ◽  
Fang Wan ◽  
Lingfeng Xiao ◽  
Feng Wu

Cemented sand and gravel (CSG) material is a new type of dam material developed on the basis of roller compacted concrete, hardfill, and ultra-poor cementing materials. Its main feature is a wide range of sources of aggregate (aggregate is not screened but by simply removing the large particles it can be fully graded on the dam filling) and low amounts of cementitious materials per unit volume. This dam construction material is not only economical and practical, but also green and environmentally friendly. There are many factors affecting the mechanical properties of CSG materials, such as aggregate gradation, sand ratio, water content, water–binder ratio, fly ash content, admixture content, etc. Based on the existing research results of the team, this paper focuses on the influence of fly ash content on the compressive strength of CSG materials. Through a large number of laboratory measured data, we found: (1) The compressive strength law of materials at different ages; the compressive strength of CSG material at age 90 d is generally 10~30% higher than that at 28 d, and it is proposed that 90 d or 180 d strength should be used as the design strength in the design of CSG material dam; (2) There is an optimal value of fly ash content in CSG materials: when the fly ash content is 50% of the total amount of cementitious materials (cement + fly ash), the fly ash content is defined as the optimal content, and the test data are verified by regression analysis. The discovery of an 'optimal dosage' of fly ash provides an important reference for the design and construction of CSG dams.

2020 ◽  
Vol 27 (1) ◽  
pp. 291-298
Author(s):  
Shoukai Chen ◽  
Yongqiwen Fu ◽  
Lei Guo ◽  
Shifeng Yang ◽  
Yajing Bie

AbstractA data set of cemented sand and gravel (CSG) mix proportion and 28-day compressive strength was established, with outliers determined and removed based on the Boxplot. Then, the distribution law of compressive strength of CSG was analyzed using the skewness kurtosis and single-sample Kolmogorov-Smirnov tests. And with the help of Python software, a model based on Back Propagation neural network was built to predict the compressive strength of CSG according to its mix proportion. The results showed that the compressive strength follows the normal distribution law, the expected value and variance were 5.471 MPa and 3.962 MPa respectively, and the average relative error was 7.16%, indicating the predictability of compressive strength of CSG and its correlation with the mix proportion.


2015 ◽  
Vol 804 ◽  
pp. 129-132
Author(s):  
Sumrerng Rukzon ◽  
Prinya Chindaprasirt

This research studies the potential for using waste ash from industrial and agricultural by-products as a pozzolanic material. Classified fly ash (FA) and ground rice husk ash (RA) were the materials used. Water requirement, compressive strength and porosity of cement mortar were investigated. Test results indicated that FA and RA (waste ash) have a high potential to be used as a good pozzolanic material. The water requirement of mortar mix decreases with the increases in fly ash content. For ground rice husk ash (RA), the water requirement of mortar mix increases with the increases in rice husk ash content. In addition, the reduction in porosity was associated with the increase in compressive strength.


Reactive powder concrete (RPC) is the ultra-high strength concrete made by cementitious materials like silica fumes, cement etc. The coarse aggregates are completely replaced by quartz sand. Steel fibers which are optional are added to enhance the ductility. Market survey has shown that micro-silica is not so easily available and relatively costly. Therefore an attempt is made to experimentally investigate the reduction of micro-silica content by replacing it with fly-ash and mechanical properties of modified RPC are investigated. Experimental investigations show that compressive strength decreases gradually with addition of the fly ash. With 10 per cent replacement of micro silica, the flexural and tensile strength showed 40 and 46 per cent increase in the respective strength, though the decrease in the compressive strength was observed to be about 20 per cent. For further percentage of replacement, there was substantial drop in compressive, flexural as well as tensile strength. The experimental results thereby indicates that utilisation of fly-ash as a partial replacement to micro silica up to 10 per cent in RPC is feasible and shows quite acceptable mechanical performance with the advantage of utilisation of fly-ash in replacement of micro-silica.


2016 ◽  
Vol 7 (5) ◽  
pp. 546-550
Author(s):  
Aurelijus Daugėla ◽  
Džigita Nagrockienė ◽  
Laurynas Zarauskas

Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.


2019 ◽  
Vol 967 ◽  
pp. 205-213
Author(s):  
Faiz U.A. Shaikh ◽  
Anwar Hosan

This paper presents the effect of nanosilica (NS) on compressive strength and microstructure of cement paste containing high volume slag and high volume slag-fly ash blend as partial replacement of ordinary Portland cement (OPC). Results show that high volume slag (HVS) cement paste containing 60% slag exhibited about 4% higher compressive strength than control cement paste, while the HVS cement paste containing 70% slag maintained the similar compressive strength to control cement paste. However, about 9% and 37% reduction in compressive strength in HVS cement pastes is observed due to use of 80% and 90% slag, respectively. The high volume slag-fly ash (HVSFA) cement pastes containing total slag and fly ash content of 60% exhibited about 5%-16% higher compressive strength than control cement paste. However, significant reduction in compressive strength is observed in higher slag-fly ash blends with increasing in fly ash contents. Results also show that the addition of 1-4% NS improves the compressive strength of HVS cement paste containing 70% slag by about 9-24%. However, at higher slag contents of 80% and 90% this improvement is even higher e.g. 11-29% and 17-41%, respectively. The NS addition also improves the compressive strength by about 1-59% and 5-21% in high volume slag-fly ash cement pastes containing 21% fly ash+49%slag and 24% fly ash+56%slag, respectively. The thermogravimetric analysis (TGA) results confirm the reduction of calcium hydroxide (CH) in HVS/HVSFA pastes containing NS indicating the formation of additional calcium silicate hydrate (CSH) gels in the system. By combining slag, fly ash and NS in high volumes e.g. 70-80%, the carbon footprint of cement paste is reduced by 66-76% while maintains the similar compressive strength of control cement paste. Keywords: high volume slag, nanosilica, compressive strength, TGA, high volume slag-fly ash blend, CO2 emission.


2012 ◽  
Vol 204-208 ◽  
pp. 3970-3973
Author(s):  
Reagan J. Case ◽  
Kai Duan ◽  
Thuraichamy G. Suntharavadivel

As a part of a large research program aiming at the cementitious materials containing recycled materials at Central Queensland University – Australia, the current paper presents the preliminary results of a study on the effects of fly ash, which is used to replace cement in concrete, on the concrete compressive strength. For this purpose, systematic experiments have been carried out to investigate the influences of fly ash ratio and age. The compressive strength of concrete specimens with replacement ratios of 15%, 30% and 45%, and aged 7 and 28 days are measured and are compared with those of the concrete specimens without fly ash at the same ages. The results demonstrate that the strength of fly ash containing concrete improves more slowly but more strongly with aging, than their fly ash free counterparts, and an optimum fly ash replacement ratio exists where the maximum compressive strength of fly ash containing concrete can be achieved, and the maximum strength for the specimens aged 28 days and above is higher that of fly ash free concrete. Furthermore, the observation strength behaviours are analysed and discussed in terms of the influences of fly ash on interface reactions and interface bonding strength.


2019 ◽  
Vol 206 ◽  
pp. 248-260 ◽  
Author(s):  
Hongbo Tan ◽  
Kangjun Nie ◽  
Xingyang He ◽  
Xiufeng Deng ◽  
Xun Zhang ◽  
...  

2012 ◽  
Vol 174-177 ◽  
pp. 802-805 ◽  
Author(s):  
Zhu Ding ◽  
Bi Qin Dong ◽  
Feng Xing

The accumulation of fly ash leads to severe problems in ecological environments. Various ways to excite the activity of fly ash in Portland cement based cementitious materials have been carried out for many years. In the present study, effect of large volume of fly ash in phosphate cement was studied. Dead burned magnesia, two phosphates (monoammonium phosphate and monosodium phosphate), and fly ash were used. The fabricated cement mortar specimens with different fly ash dosages were cured for 28 days in the lab air. Compressive strength was determined in 1d, 3d, 7d and 28d respectively. It is showed the compressive strength reduced with increase of fly ash content and increased with the curing time. After cured 28 days, the compressive strength of cement mortar developed to14MPa, when 80% fly ash was used. The reaction product, Na2HPO4•17H2O was found by X-ray diffraction analysis in sodium phosphate based cement. No ammonia gas was emitted and large volume of fly ash can be used in cement prepared from sodium phosphate. It is a new environmentally friendly cement material.


Sign in / Sign up

Export Citation Format

Share Document