scholarly journals Semipolar {202̅1} GaN Edge-Emitting Laser Diode on Epitaxial Lateral Overgrown Wing

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1563
Author(s):  
Srinivas Gandrothula ◽  
Haojun Zhang ◽  
Pavel Shapturenka ◽  
Ryan Anderson ◽  
Matthew S. Wong ◽  
...  

Edge-emitting laser diodes (LDs) were fabricated on a reduced dislocation density epitaxial lateral overgrown (ELO) wing of a semipolar {202̅1} GaN substrate, termed an ELO wing LD. Two types of facet feasibility studies were conducted: (1) “handmade” facets, wherein lifted-off ELO wing LDs were cleaved manually, and (2) facets formed on wafers through reactive ion etching (RIE). Pulsed operation electrical and optical measurements confirmed the laser action in the RIE facet LDs with a threshold current of ~19 kAcm−2 and maximum light output power of 20 mW from a single uncoated facet. Handmade facet devices showed spontaneous, LED-like emission, confirming device layers remain intact after mechanical liftoff.

1997 ◽  
Vol 482 ◽  
Author(s):  
J. D. Brown ◽  
J. T. Swindell ◽  
M. A. L. Johnson ◽  
Zhonghai Yu ◽  
J. F. Schetzina ◽  
...  

AbstractThis paper reports the events at NCSU leading up to and including those of June 5, 1997 which produced the first demonstration of a nitride laser diode on silicon carbide – and the very first nitride laser demonstration outside of Japan. All of the laser diode samples tested at NCSU were designed, grown, and fabricated into cleaved cavity test structures at Cree Research. Laser testing at NCSU consisted of spectral emission versus current measurements, light output power versus current (L-I) measurement, and light output polarization measurements versus current. The first successful laser on silicon carbide emitted at 402.6 nm. Subsequently, lasers displaying outputs ranging from 402.6 to 430.2 have been successfully tested at NCSU.


2017 ◽  
Vol 29 (24) ◽  
pp. 2203-2206 ◽  
Author(s):  
Jianping Liu ◽  
Liqun Zhang ◽  
Deyao Li ◽  
Kun Zhou ◽  
Yang Cheng ◽  
...  

2009 ◽  
Vol 30 (11) ◽  
pp. 1152-1154 ◽  
Author(s):  
Hung-Wen Huang ◽  
Chung-Hsiang Lin ◽  
Zhi-Kai Huang ◽  
Kang-Yuan Lee ◽  
Chang-Chin Yu ◽  
...  

2003 ◽  
Vol 798 ◽  
Author(s):  
K. Tachibana ◽  
Y. Harada ◽  
S. Saito ◽  
S. Nunoue ◽  
H. Katsuno ◽  
...  

ABSTRACTCharacterization by reciprocal space mapping of x-ray diffraction (XRD) intensity was carried out for epitaxial layers of GaN-based laser structures on two GaN substrates: GaN substrate and GaN template on sapphire substrate. The difference between these two substrates was shown clearly. The distribution of XRD intensity of the epitaxial layers on GaN substrate was smaller than that of the epitaxial layers on GaN template on sapphire substrate. In the lasers with the epitaxial structure on GaN substrate, the light output power was as high as 200 mW under continuous-wave operation at room temperature. Excellent noise characteristics with relative intensity noise of -132 dB/Hz were also obtained at a low light output power of 3 mW without any high-frequency modulation. These results support that GaN substrates are promising for realizing GaN-based lasers with high performance.


Author(s):  
Sushma Madduri ◽  
Bahgat G. Sammakia ◽  
William Infantolino ◽  
Satish C. Chaparala ◽  
Lawrence C. Hughes ◽  
...  

This paper presents a performance study done on semiconductor laser diodes in a moisture condensing environment. Devices with laser diodes are used in a wide variety of electronic applications and in various climatic conditions. The motivation behind this study is a common environmental exposure, where a device using a laser diode is brought into a relatively humid environment (a building) from a cold, outside environment. Under such conditions, condensation occurs on various components of the device, including the diode, and could affect the laser output power. Reliability of the device is a critical concern since the laser diode and the lens are susceptible to failure due to such repetitive condensation conditions. The test vehicle chosen for this study was a 980nm laser diode. These are used in products for a broad range of markets, including data communications, aerospace, material processing, scientific and defense industries [1–3]. These products may be used in environmental conditions that could result in condensation within the product. A hermetic package could address this concern, but it is an expensive option. Nonhermetic packaging for the laser component could help lower the cost of these devices; however reliability is a potential concern. Prior research on laser diodes consists of various reliability measurements on 980nm lasers using stress tests (e.g. accelerated aging tests; thermal cycling tests) [3–6]. Reliability analysis of laser diodes specifically addressing condensation measurements has not been previously reported. A Military Standard Specification [MIL-STD-883E Method 1004.7] titled, ‘Moisture resistance test’ was used to conduct this reliability study [10]. An experimental setup was designed and fabricated. A photonic package with a 980nm laser diode was subjected to repetitive condensing cycles and laser output power was recorded as a function of time, temperature and humidity. The variation in laser output power due to condensation was observed and quantified. The focus of this paper is on performance degradation of the laser diode. The possible mechanisms for this degradation are currently being investigated.


2017 ◽  
Vol 138 ◽  
pp. 84-88 ◽  
Author(s):  
Chia-Lung Tsai ◽  
Hsueh-Hsing Liu ◽  
Jun-Wei Chen ◽  
Chien-Pin Lu ◽  
Kazutada Ikenaga ◽  
...  

2016 ◽  
Vol 448 ◽  
pp. 105-108 ◽  
Author(s):  
Daisuke Iida ◽  
Shen Lu ◽  
Sota Hirahara ◽  
Kazumasa Niwa ◽  
Satoshi Kamiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document