scholarly journals Acoustic Tunneling Study for Hexachiral Phononic Crystals Based on Dirac-Cone Dispersion Properties

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1577
Author(s):  
Luyun Chen ◽  
Yong Liu ◽  
Hui Kong

Acoustic tunneling is an essential property for phononic crystals in a Dirac-cone state. By analyzing the linear dispersion relations for the accidental degeneracy of Bloch eigenstates, the influence of geometric parameters on opening the Dirac-cone state and the directional band gaps’ widths are investigated. For two-dimensional hexachiral phononic crystals, for example, the four-fold accidental degenerate Dirac point emerges at the center of the irreducible Brillouin zone (IBZ). The Dirac cone properties and the band structure inversion problem are discussed. Finally, to verify acoustic transmission properties near the double-Dirac-cone frequency region, the numerical calculation of the finite-width phononic crystal structure is carried out, and the acoustic transmission tunneling effect is proved. The results enrich and expand the manipulating method in the topological insulator problem for hexachiral phononic crystals.

Author(s):  
Xiujuan Zhang ◽  
Ying Wu

A semi-Dirac cone refers to a peculiar type of dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. It was originally discovered in electron systems, in which the associated quasi-particles are massless along one direction, like those in graphene, but effective-mass-like along the other. It was reported that a semi-Dirac point is associated with the topological phase transition between a semi-metallic phase and a band insulator. Very recently, the classical analogy of a semi-Dirac cone has been reported in an electromagnetic system. Here, we demonstrate that, by accidental degeneracy, two-dimensional phononic crystals consisting of square arrays of elliptical cylinders embedded in water are also able to produce the particular dispersion relation of a semi-Dirac cone in the center of the Brillouin zone. A perturbation method is used to evaluate the linear slope and to affirm that the dispersion relation is a semi-Dirac type. If the scatterers are made of rubber, in which the acoustic wave velocity is lower than that in water, the semi-Dirac dispersion can be characterized by an effective medium theory. The effective medium parameters link the semi-Dirac point to a topological transition in the iso-frequency surface of the phononic crystal, in which an open hyperbola is changed into a closed ellipse. This topological transition results in drastic change in wave manipulation. On the other hand, the theory also reveals that the phononic crystal is a double-zero-index material along the x-direction and photonic-band-edge material along the perpendicular direction (y-direction). If the scatterers are made of steel, in which the acoustic wave velocity is higher than that in water, the effective medium description fails, even though the semi-Dirac dispersion relation looks similar to that in the previous case. Therefore different wave transport behavior is expected. The semi-Dirac points in phononic crystals described in this work would offer new ways to manipulate acoustic waves with simple periodic structures.


Author(s):  
Jean-Numa Gillet ◽  
Yann Chalopin ◽  
Sebastian Volz

Owing to their thermal insulating properties, superlattices have been extensively studied. A breakthrough in the performance of thermoelectric devices was achieved by using superlattice materials. The problem of those nanostructured materials is that they mainly affect heat transfer in only one direction. In this paper, the concept of canceling heat conduction in the three spatial directions by using atomic-scale three-dimensional (3D) phononic crystals is explored. A period of our atomic-scale 3D phononic crystal is made up of a large number of diamond-like cells of silicon atoms, which form a square supercell. At the center of each supercell, we substitute a smaller number of Si diamond-like cells by other diamond-like cells, which are composed of germanium atoms. This elementary heterostructure is periodically repeated to form a Si/Ge 3D nanostructure. To obtain different atomic configurations of the phononic crystal, the number of Ge diamond-like cells at the center of each supercell can be varied by substitution of Si diamond-like cells. The dispersion curves of those atomic configurations can be computed by lattice dynamics. With a general equation, the thermal conductivity of our atomic-scale 3D phononic crystal can be derived from the dispersion curves. The thermal conductivity can be reduced by at least one order of magnitude in an atomic-scale 3D phononic crystal compared to a bulk material. This reduction is due to the decrease of the phonon group velocities without taking into account that of the phonon average mean free path.


Author(s):  
P. Maryam ◽  
Rozina Chaudhary ◽  
Shahid Ali ◽  
Hassan Amir Shah ◽  
Stefaan Poedts

Abstract Within the framework of kinetic theory, the nonlinear interaction of electromagnetic waves (EMWs) with a degenerate electron-ion plasma is studied to account for the electron quantum mechanical effects. For this purpose, a specific quantum regime is considered, for which the degenerate electron Fermi velocity is assumed to be taken of the order of group velocity of EMWs. This eventually leads to the existence of nonlinear Landau damping rate for the EMWs in the presence of electron Ponderomotive force. The electrons-ion density oscillations may be arisen from the nonlinear interaction of EMWs, leading to a new type of nonlinear Schrödinger equation in terms of a complex amplitude for electromagnetic pump wave. The profiles of nonlinear damping rate reveal that EMWs become less damped for increasing the quantum tunnelling effects. The electrostatic response for the linear electrostatic waves is also investigated and derived a linear dispersion for the ion-acoustic damping rate. The latter is a direct function of electron Fermi speed and does not rely on the Bohm tunneling effect. The obtained results are numerically analyzed for the two microwaves of different harmonics in the context of nonrelativistic astrophysical dense plasma environments, e.g., white dwarfs, where the electron quantum corrections cannot be ignored.


Author(s):  
Chittaranjan Nayak ◽  
Mehdi Solaimani ◽  
Alireza Aghajamali ◽  
Arafa H. Aly

In this study, we have scrutinized the frequency gap generation by changing the geometrical parameters of a one-dimensional phononic crystal. For this purpose, we have calculated the transmission coefficient of an incident acoustic wave by using the transfer matrix method. We have retained and fixed the total length of the system and changed the system internal geometry not to increase the system length too much. Another reason was to adjust the phononic band gaps and get the desired transmission properties by finding the optimum internal geometry without increasing or decreasing the total length of phononic crystals. In addition, we also propose few structures with the opportunity of applications in acoustical devices such as sonic reflectors. Our results can also be of high interest to design acoustic filters in the case that transmission of certain frequencies is necessary.


2019 ◽  
Vol 26 (02) ◽  
pp. 1850144 ◽  
Author(s):  
ARAFA H. ALY ◽  
AHMED NAGATY ◽  
Z. KHALIFA

We have theoretically obtained the transmittance properties of one-dimensional phononic crystals incorporating a piezoelectric material as a defect layer. We have used the transfer matrix method in our analysis with/without defect materials. By increasing the thickness of the defect layer, we obtained a sharp peak created within the bandgap, that indicates to the significance of defect layer thickness on the band structure. The localized modes and a particular intensity estimated within the bandgap depend on the piezoelectric material properties. By applying different quantities of an external electric field, the position of the peak shifts to different frequencies. The electric field induces a relative change in the piezoelectric thickness. Our structure may be very useful in some applications such as sensors, acoustic switches, and energy applications.


Author(s):  
Osama R. Bilal ◽  
Mahmoud I. Hussein

The topological distribution of the material phases inside the unit cell composing a phononic crystal has a significant effect on its dispersion characteristics. This topology can be engineered to produce application-specific requirements. In this paper, a specialized genetic-algorithm-based topology optimization methodology for the design of two-dimensional phononic crystals is presented. Specifically the target is the opening and maximization of band gap size for (i) out-of-plane waves, (ii) in-plane waves and (iii) both out-of-plane and in-plane waves simultaneously. The methodology as well as the resulting designs are presented.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rolando Yera ◽  
Luisina Forzani ◽  
Carlos Gustavo Méndez ◽  
Alfredo E. Huespe

PurposeThis work presents a topology optimization methodology for designing microarchitectures of phononic crystals. The objective is to get microstructures having, as a consequence of wave propagation phenomena in these media, bandgaps between two specified bands. An additional target is to enlarge the range of frequencies of these bandgaps.Design/methodology/approachThe resulting optimization problem is solved employing an augmented Lagrangian technique based on the proximal point methods. The main primal variable of the Lagrangian function is the characteristic function determining the spatial geometrical arrangement of different phases within the unit cell of the phononic crystal. This characteristic function is defined in terms of a level-set function. Descent directions of the Lagrangian function are evaluated by using the topological derivatives of the eigenvalues obtained through the dispersion relation of the phononic crystal.FindingsThe description of the optimization algorithm is emphasized, and its intrinsic properties to attain adequate phononic crystal topologies are discussed. Particular attention is addressed to validate the analytical expressions of the topological derivative. Application examples for several cases are presented, and the numerical performance of the optimization algorithm for attaining the corresponding solutions is discussed.Originality/valueThe original contribution results in the description and numerical assessment of a topology optimization algorithm using the joint concepts of the level-set function and topological derivative to design phononic crystals.


2021 ◽  
pp. 1-30
Author(s):  
Ignacio Arretche ◽  
Kathryn Matlack

Abstract Locally resonant materials allow for wave propagation control in the sub-wavelength regime. Even though these materials do not need periodicity, they are usually designed as periodic systems since this allows for the application of the Bloch theorem and analysis of the entire system based on a single unit cell. However, geometries that are invariant to translation result in equations of motion with periodic coefficients only if we assume plane wave propagation. When wave fronts are cylindrical or spherical, a system realized through tessellation of a unit cell does not result in periodic coefficients and the Bloch theorem cannot be applied. Therefore, most studies of periodic locally resonant systems are limited to plane wave propagation. In this paper, we address this limitation by introducing a locally resonant effective phononic crystal composed of a radially-varying matrix with attached torsional resonators. This material is not geometrically periodic but exhibits effective periodicity, i.e. its equations of motion are invariant to radial translations, allowing the Bloch theorem to be applied to radially propagating torsional waves. We show that this material can be analyzed under the already developed framework for metamaterials. To show the importance of using an effectively periodic system, we compare its behavior to a system that is not effectively periodic but has geometric periodicity. We show considerable differences in transmission as well as in the negative effective properties of these two systems. Locally resonant effective phononic crystals open possibilities for subwavelength elastic wave control in the near field of sources.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 421 ◽  
Author(s):  
Nan-Nong Huang ◽  
Yi-Cheng Chung ◽  
Hsiao-Ting Chiu ◽  
Jin-Chen Hsu ◽  
Yu-Feng Lin ◽  
...  

A dual photonic–phononic crystal slot nanobeam with a gradient cavity for liquid sensing is proposed and analyzed using the finite-element method. Based on the photonic and phononic crystals with mode bandgaps, both optical and acoustic waves can be confined within the slot and holes to enhance interactions between sound/light and analyte solution. The incorporation of a gradient cavity can further concentrate energy in the cavity and reduce energy loss by avoiding abrupt changes in lattices. The newly designed sensor is aimed at determining both the refractive index and sound velocity of the analyte solution by utilizing optical and acoustic waves. The effect of the cavity gradient on the optical sensing performance of the nanobeam is thoroughly examined. By optimizing the design of the gradient cavity, the photonic–phononic sensor has significant sensing performances on the test of glucose solutions. The currently proposed device provides both optical and acoustic detections. The analyte can be cross-examined, which consequently will reduce the sample sensing uncertainty and increase the sensing precision.


Sign in / Sign up

Export Citation Format

Share Document