scholarly journals Bacterial Diversity and Community in Regional Water Microbiota between Different Towns in World’s Longevity Township Jiaoling, China

Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 361
Author(s):  
Lei Wu ◽  
Xinqiang Xie ◽  
Jumei Zhang ◽  
Yu Ding ◽  
Qingping Wu

Healthy longevity is associated with many factors, however, the potential correlation between longevity and microbiota remains elusive. To address this, we explored environmental microbiota from one of the world’s longevity townships in China. We used 16S rRNA gene high-throughput sequencing to analyze the composition and function of water microbiota. The composition and diversity of water microbiota significantly differed between the towns. Lactobacillus, Streptococcus, Bacteroides, Faecalibacterium, and Stenotrophomonas were only dominant in Xinpu, a town with an exceptionally high centenarian population. Several biomarkers were identified, including Flavobacterium, Acinetobacter, Paracoccus, Lactobacillales, Psychrobacter, Bacteroides, Ruminococcaceae, and Faecalibacterium, and these shown to be responsible for the significant differences between towns. The main species contributing to the differences between towns were Cyanobacteria, Cupriavidus and Ralstonia. Based on KEGG pathways showed that the predicted metabolic characteristics of the water microbiota in Xinpu towns were significantly different to those of the other towns. The results revealed significant differences in the composition and diversity of water microbiota in the longevity township. These findings provide a foundation for further research on the role of water microbiota in healthy longevity.

2021 ◽  
Author(s):  
Lei Wu ◽  
Xinqiang Xie ◽  
Jun Ma ◽  
Jumei Zhang ◽  
Yu Ding ◽  
...  

Abstract Healthy longevity is a complicated process, however, the underlying mechanisms between longevity and microbiota warrant investigation. To address this, we characterized a longevity trajectory of environmental microbiota in a longevity township. We used high-throughput sequencing of the 16S rRNA gene to analyse the composition and function of soil microbiota. The composition and diversity of soil microbiota significantly differed between towns. The dominant bacteria at the phylum level included Proteobacteria, Firmicutes, and Acidobacteria. At the genus level, Chujaibacter, Acidipila, and Lactobacillus were dominant. However, Steroidobacter, Comamonas, and Pseudoxanthomonas were only dominant in Xinpu with high centenarian population. Twelve biomarkers were responsible for significant differences between towns, including Lactobacillus, Muribaculaceae, Ruminococcaceae, Lachnospiraceae, and Chitinophagales, etc. The main species contributing to the differences of towns were Chujaibacter, Acidipila, Lactobacillus, Rhodanobacter, Lysobacter, Bryobacter, Granulicella, Flavobacterium, and Mizugakiibacter. The function of exosome, cysteine and methionine metabolism, amino acid-related enzymes, peptidases, starch and sucrose metabolism, etc., were predicted. Thus, we have revealed significant differences in the composition and diversity of soil microbiota in the world’s longevity township, the relationship between soil microbiota and long-lived people. These findings provide a research foundation for the role of soil microbiota in healthy longevity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hui-Zhong Wang ◽  
Xiao-Meng Lv ◽  
Yue Yi ◽  
Dan Zheng ◽  
Min Gou ◽  
...  

AbstractPropionate is one of the most important intermediates of anaerobic fermentation. Its oxidation performed by syntrophic propionate-oxidizing bacteria coupled with hydrogenotrophic methanogens is considered to be a rate-limiting step for methane production. However, the current understanding of SPOB is limited due to the difficulty of pure culture isolation. In the present study, two anaerobic chemostats fed with propionate as the sole carbon source were operated at different dilution rates (0.05 d−1 and 0.15 d−1). The propionate- and acetate-oxidizing bacteria in the two methanogenic chemostats were investigated combining DNA-stable isotope probing (DNA-SIP) and 16S rRNA gene high-throughput sequencing. The results of DNA-SIP with 13C-propionate/acetate suggested that, Smithella, Syntrophobacter, Cryptanaerobacter, and unclassified Rhodospirillaceae may be putative propionate-oxidizing bacteria; unclassified Spirochaetaceae, unclassified Synergistaceae, unclassified Elusimicrobia, Mesotoga, and Gracilibacter may contribute to acetate oxidation; unclassified Syntrophaceae and Syntrophomonas may be butyrate oxidizers. By DNA-SIP, unclassified OTUs with 16S rRNA gene abundance higher than 62% of total Bacteria in the PL chemostat and 38% in the PH chemostat were revealed to be related to the degradation of propionate. These results suggest that a variety of uncultured bacteria contribute to propionate degradation during anaerobic digestion. The functions and metabolic characteristics of these bacteria require further investigation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shenhai Gong ◽  
Yinglin Feng ◽  
Yunong Zeng ◽  
Huanrui Zhang ◽  
Meiping Pan ◽  
...  

Abstract Background Gut microbiota has been reported to be disrupted by cisplatin, as well as to modulate chemotherapy toxicity. However, the precise role of intestinal microbiota in the pathogenesis of cisplatin hepatotoxicity remains unknown. Methods We compared the composition and function of gut microbiota between mice treated with and without cisplatin using 16S rRNA gene sequencing and via metabolomic analysis. For understanding the causative relationship between gut dysbiosis and cisplatin hepatotoxicity, antibiotics were administered to deplete gut microbiota and faecal microbiota transplantation (FMT) was performed before cisplatin treatment. Results 16S rRNA gene sequencing and metabolomic analysis showed that cisplatin administration caused gut microbiota dysbiosis in mice. Gut microbiota ablation by antibiotic exposure protected against the hepatotoxicity induced by cisplatin. Interestingly, mice treated with antibiotics dampened the mitogen-activated protein kinase pathway activation and promoted nuclear factor erythroid 2-related factor 2 nuclear translocation, resulting in decreased levels of both inflammation and oxidative stress in the liver. FMT also confirmed the role of microbiota in individual susceptibility to cisplatin-induced hepatotoxicity. Conclusions This study elucidated the mechanism by which gut microbiota mediates cisplatin hepatotoxicity through enhanced inflammatory response and oxidative stress. This knowledge may help develop novel therapeutic approaches that involve targeting the composition and metabolites of microbiota.


Polar Biology ◽  
2021 ◽  
Author(s):  
Eleanor E. Jackson ◽  
Ian Hawes ◽  
Anne D. Jungblut

AbstractThe undulating ice of the McMurdo Ice Shelf, Southern Victoria Land, supports one of the largest networks of ice-based, multiyear meltwater pond habitats in Antarctica, where microbial mats are abundant and contribute most of the biomass and biodiversity. We used 16S rRNA and 18S rRNA gene high-throughput sequencing to compare variance of the community structure in microbial mats within and between ponds with different salinities and pH. Proteobacteria and Cyanobacteria were the most abundant phyla, and composition at OTU level was highly specific for the meltwater ponds with strong community sorting along the salinity gradient. Our study provides the first detailed evaluation of eukaryote communities for the McMurdo Ice Shelf using the 18S rRNA gene. They were dominated by Ochrophyta, Chlorophyta and Ciliophora, consistent with previous microscopic analyses, but many OTUs belonging to less well-described heterotrophic protists from Antarctic ice shelves were also identified including Amoebozoa, Rhizaria and Labyrinthulea. Comparison of 16S and 18S rRNA gene communities showed that the Eukaryotes had lower richness and greater similarity between ponds in comparison with Bacteria and Archaea communities on the McMurdo Ice shelf. While there was a weak correlation between community dissimilarity and geographic distance, the congruity of microbial assemblages within ponds, especially for Bacteria and Archaea, implies strong habitat filtering in ice shelf meltwater pond ecosystems, especially due to salinity. These findings help to understand processes that are important in sustaining biodiversity and the impact of climate change on ice-based aquatic habitats in Antarctica.


2011 ◽  
Vol 50 (3) ◽  
pp. 583-589 ◽  
Author(s):  
M. Marin ◽  
J. M. Garcia-Lechuz ◽  
P. Alonso ◽  
M. Villanueva ◽  
L. Alcala ◽  
...  

2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Asieh Bolandi ◽  
Saam Torkan ◽  
Iman Alavi

In despite of the high clinical impact of Helicobacter pylori, its exact sources and routes of transmission are unknown. Dogs may play an imperative role in the transmission of H. pylori to humans. The current investigation was done to study the status of vacA and cagA genotypes in the H. pylori strains of dogs. One-hundred and fifty fecal samples were collected from healthy and complicated household dogs. Genomic DNA was extracted from fecal samples and presence of 16S rRNA gene was studied using the PCR amplification. Distribution of vacA and cagA genotypes were studied by the multiplex PCR. Thirteen out of 150 fecal samples (8.66%) were positive for H. pylori 16S rRNA gene. Prevalence of H. pylori in healthy and complicated dogs were 5.55% and 8.57%, respectively. Male had the higher prevalence of H. pylori (P=0.038). The most commonly detected genotypes among the H. pylori strains were vacAs1A (61.53%), cagA (38.46%), vacAm1a (38.46%), vacAs2 (30.76%) and vacAm2 (30.76%). The most commonly detected combined genotypes were s1aCagA (30.76%), s1am1a (23.07%), s2m1a (23.07%) and s2CagA (23.07%). Iranian household dogs harbor H. pylori in their fecal samples similar in genotypes of the vacA and cagA alleles which suggest that complicated and even healthy dogs may be the latent host of the H. pylori and its genotypes. However, supplementary studies are required to found the exact role of dogs as a definitive host of the H. pylori.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rafael J. Vivero ◽  
Marcela Villegas-Plazas ◽  
Gloria E. Cadavid-Restrepo ◽  
Claudia Ximena Moreno Herrera ◽  
Sandra I. Uribe ◽  
...  

AbstractPhlebotomine sand flies are remarkable vectors of several etiologic agents (virus, bacterial, trypanosomatid Leishmania), posing a heavy health burden for human populations mainly located at developing countries. Their intestinal microbiota is involved in a wide range of biological and physiological processes, and could exclude or facilitate such transmission of pathogens. In this study, we investigated the Eubacterial microbiome from digestive tracts of Lu. evansi adults structure using 16S rRNA gene sequence amplicon high throughput sequencing (Illumina MiSeq) obtained from digestive tracts of Lu. evansi adults. The samples were collected at two locations with high incidence of the disease in humans: peri-urban and forest ecosystems from the department of Sucre, Colombia. 289,068 quality-filtered reads of V4 region of 16S rRNA gene were obtained and clustered into 1,762 operational taxonomic units (OTUs) with 97% similarity. Regarding eubacterial diversity, 14 bacterial phyla and 2 new candidate phyla were found to be consistently associated with the gut microbiome content. Proteobacteria, Firmicutes, and Bacteroidetes were the most abundant phyla in all the samples and the core microbiome was particularly dominated by Methylobacterium genus. Methylobacterium species, are known to have mutualistic relationships with some plants and are involved in shaping the microbial community in the phyllosphere. As a remarkable feature, OTUs classified as Wolbachia spp. were found abundant on peri-urban ecosystem samples, in adult male (OTUs n = 776) and unfed female (OTUs n = 324). Furthermore, our results provide evidence of OTUs classified as Cardinium endosymbiont in relative abundance, notably higher with respect to Wolbachia. The variation in insect gut microbiota may be determined by the environment as also for the type of feeding. Our findings increase the richness of the microbiota associated with Lu. evansi. In this study, OTUs of Methylobacterium found in Lu. evansi was higher in engorged females, suggesting that there are interactions between microbes from plant sources, blood nutrients and the parasites they transmit during the blood intake.


Sign in / Sign up

Export Citation Format

Share Document