scholarly journals Spatial Genetic Structure of Prunus mongolica in Arid Northwestern China Based on RAD Sequencing Data

Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 397
Author(s):  
Hong-Xiang Zhang ◽  
Qian Wang ◽  
Zhi-Bin Wen

The extensive range of sand deserts, gravel deserts, and recent human activities have shaped habitat fragmentation of relict and endangered plants in arid northwestern China. Prunus mongolica is a relict and endangered shrub that is mainly distributed in the study area. In the present study, population genomics was integrated with a species distribution model (SDM) to investigate the spatial genetic diversity and structure of P. mongolica populations in response to habitat fragmentation and create a proposal for the conservation of this endangered species. The results showed that the northern marginal populations were the first isolated from other populations. The SDM suggested that these marginal populations had low levels of habitat suitability during the glacial period. They could not obtain migration corridors, and thus possessed low levels of gene flow connection with other populations. Additionally, several populations underwent secondarily geographical isolation from other central populations, which preserved particular genetic lineages. Genetic diversity was higher in southern populations than in northern ones. It was concluded that long-term geographical isolation after historical habitat fragmentation promoted the divergence of marginal populations and refugial populations along mountains from other populations. The southern populations could have persisted in their distribution ranges and harbored higher levels of genetic diversity than the northern populations, whose distribution ranges fluctuated in response to paleoclimatic changes. We propose that the marginal populations of P. mongolica should be well considered in conservation management.

Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 335
Author(s):  
Hong-Xiang Zhang ◽  
Qian Wang ◽  
Su-Wen Jia

Extensive range of deserts and gobis (rocks) had promoted habitat fragmentation of species in arid northwestern China. Distribution of endangered Gymnocarpos przewalskii Maxim. covers most of gobis (rocks) and desert terrain across arid regions of northwestern China. In the present study, we had employed genomic phylogeographical analysis to investigate population structure of G. przewalskii and test the effect of environmental conditions on spatial pattern of genetic diversity. Results showed four groups were identified from east to west: Edge of the Alxa Desert, Hexi Corridor, Hami Basin, and North edge of the Tarim Basin. Genetic diversity was at an equal level among four groups. General linear model (GLM) analysis showed spatial pattern of genetic diversity was significant correlated with three habitat variables including habitat suitability at present (Npre) and last glacial maximum (LGM) (NLGM) periods, and locality habitat stability (NStab). It concluded that habitat fragmentation had triggered lineage divergences of G. przewalskii in response to long-term aridification. Genome-wide single nucleotide polymorphisms (SNPs) could increase the ability of clarifying population structures in comparison with traditional molecular markers. Spatial pattern of genetic diversity was determined by fragmented habitats with high habitat suitability (Npre and NLGM) and stability (NStab). At last, we propose to establish four conservation units which are in consistent with the population grouping to maintain the genetic integrity of this endangered species.


AoB Plants ◽  
2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Alice Backes ◽  
Geraldo Mäder ◽  
Caroline Turchetto ◽  
Ana Lúcia Segatto ◽  
Jeferson N Fregonezi ◽  
...  

Abstract Different genetic patterns have been demonstrated for narrowly distributed taxa, many of them linking rarity to evolutionary history. Quite a few species in young genera are endemics and have several populations that present low variability, sometimes attributed to geographical isolation or dispersion processes. Assessing the genetic diversity and structure of such species may be important for protecting them and understanding their diversification history. In this study, we used microsatellite markers and plastid sequences to characterize the levels of genetic variation and population structure of two endemic and restricted species that grow in isolated areas on the margin of the distribution of their respective genera. Plastid and nuclear diversities were very low and weakly structured in their populations. Evolutionary scenarios for both species are compatible with open-field expansions during the Pleistocene interglacial periods and genetic variability supports founder effects to explain diversification. At present, both species are suffering from habitat loss and changes in the environment can lead these species towards extinction.


2012 ◽  
Vol 103 (3) ◽  
pp. 408-417 ◽  
Author(s):  
Stefano Leonardi ◽  
Paolo Piovani ◽  
Marta Scalfi ◽  
Andrea Piotti ◽  
Raffaello Giannini ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1503
Author(s):  
Jaromir Guzinski ◽  
Paolo Ruggeri ◽  
Marion Ballenghien ◽  
Stephane Mauger ◽  
Bertrand Jacquemin ◽  
...  

Temperature is one of the most important range-limiting factors for many seaweeds. Driven by the recent climatic changes, rapid northward shifts of species’ distribution ranges can potentially modify the phylogeographic signature of Last Glacial Maximum. We explored this question in detail in the cold-tolerant kelp species Saccharina latissima, using microsatellites and double digest restriction site-associated DNA sequencing ( ddRAD-seq) derived single nucleotide polymorphisms (SNPs) to analyze the genetic diversity and structure in 11 sites spanning the entire European Atlantic latitudinal range of this species. In addition, we checked for statistical correlation between genetic marker allele frequencies and three environmental proxies (sea surface temperature, salinity, and water turbidity). Our findings revealed that genetic diversity was significantly higher for the northernmost locality (Spitsbergen) compared to the southern ones (Northern Iberia), which we discuss in light of the current state of knowledge on phylogeography of S. latissima and the potential influence of the recent climatic changes on the population structure of this species. Seven SNPs and 12 microsatellite alleles were found to be significantly associated with at least one of the three environmental variables. We speculate on the putative adaptive functions of the genes associated with the outlier markers and the importance of these markers for successful conservation and aquaculture strategies for S. latissima in this age of rapid global change.


2018 ◽  
Vol 52 ◽  
pp. 00027 ◽  
Author(s):  
Mohammad Basyuni ◽  
Shigeyuki Baba ◽  
Hirosuke Oku

Microsatellite loci were used for estimating genetic diversity and structure for three populations of B. gymnorrhiza and K. obovata (Rhizophoracea) in Okinawa, Japan. Thirty propagules of individual samples representing the population of both species were genotyped at five microsatellites. The level of observed heterozygosity (HO) was observed for several population, overall loci, ranged 0.422-0.800 with an average 0.627 for B. gymnorrhiza and 0.477-0.822 with an average 0.665 for K. obovata, indicating both species had relatively low genetic diversity. Both species showed low levels of allelic diversity, 3-5 and 3-5 alleles per locus, respectively. Gene diversitywas also maintained within populations (HS: 0.741 and 0.954). Additionally, an analysis of molecular variance (AMOVA) based on the immeasurable alleles model (F-statistics), for B. gymnorrhiza and K. obovata found that most of the variation resided within individuals in the total populations, i.e. 79.78 % and 69.90 % respectively, and among individuals within populations, i.e.14.30 % and 27.95 % respectively. There was little variation between populations, i.e. 5.92 % and 2.15 % for B. gymnorrhiza and K. obovata, respectively. The high-level genetic differentiation within individuals and populations both species may be due to the geographic range of the species, mating system, and environmental factors.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1268
Author(s):  
Bianka Tóth ◽  
Rasoul Khosravi ◽  
Mohammad Reza Ashrafzadeh ◽  
Zoltán Bagi ◽  
Milán Fehér ◽  
...  

Hungary is one of the largest common carp-production countries in Europe and now, there is a large number of local breeds and strains in the country. For proper maintenance of the animal genetic resources, information on their genetic diversity and structure is essential. At present, few data are available on the genetic purity and variability of the Hungarian common carp. In this study, we genetically analyzed 13 strains in Hungary and, in addition, the Amur wild carp, using 12 microsatellite markers. A total of 117 unique alleles were detected in 630 individuals. Low levels of genetic differentiation (Fst and Cavalli–Sforza and Edwards distance) were estimated among strains. The AMOVA showed the low but significant level of genetic differentiation among strains (3.79%). Bayesian clustering analysis using STRUCTURE classified the strains into 14 different clusters. The assignment test showed that 93.64% of the individuals could be assigned correctly into their original strain. Overall, our findings can be contributed to complementing scientific knowledge for conservation and management of threatened strains of common carp.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5296 ◽  
Author(s):  
Zhi-Zhong Li ◽  
Andrew W. Gichira ◽  
Qing-Feng Wang ◽  
Jin-Ming Chen

Brasenia schreberiJ.F. Gmelin (Cabombaceae), an aquatic herb that occurs in fragmented locations in China, is rare and endangered. Understanding its genetic diversity and structure is crucial for its conservation and management. In this study, 12 microsatellite markers were used to estimate the genetic diversity and variation in 21 populations ofB. schreberiin China. A total of 61 alleles were found; assessment of allelic richness (Ar = 1.92) and observed and expected heterozygosity (HO= 0.200,HE= 0.256) suggest lower genetic diversity compared to some endangered species, and higher variation was observed within populations (58.68%) rather than among populations (41.32%). No significant correlation between geographical and genetic distance among populations was detected (Mantel test,r= 0.0694;P= 0.7985), which may have likely resulted from barriers to gene flow (Nm = 0.361) that were produced by habitat fragmentation. However, Bayesian and neighbor-joining cluster analyses suggest a population genetic structure consisting of two clusters (I and II) or four subclusters (I-1, 2 and II-1, 2). The genetic structure and distribution ofB. schreberiin China may have involved glacial refugia that underwent range expansions, introgression, and habitat fragmentation. The findings of the present study emphasize the importance for both in situ and ex situ conservation efforts.


2005 ◽  
Vol 2 (1) ◽  
pp. 152-154 ◽  
Author(s):  
Jane K Hill ◽  
Clare L Hughes ◽  
Calvin Dytham ◽  
Jeremy B Searle

Some species are expanding their ranges polewards during current climate warming. However, anthropogenic fragmentation of suitable habitat is affecting expansion rates and here we investigate interactions between range expansion, habitat fragmentation and genetic diversity. We examined three closely related Satyrinae butterflies, which differ in their habitat associations, from six sites along a transect in England from distribution core to expanding range margin. There was a significant decline in allozyme variation towards an expanding range margin in Pararge aegeria , which has the most restricted habitat availability, but not in Pyronia tithonus whose habitat is more widely available, or in a non-expanding ‘control species’ ( Maniola jurtina ). Moreover, data from another transect in Scotland indicated that declines in genetic diversity in P. aegeria were evident only on the transect in England, which had greater habitat fragmentation. Our results indicate that fragmentation of breeding habitats leads to more severe founder events during colonization, resulting in reduced diversity in marginal populations in more specialist species. The continued widespread loss of suitable habitats in the future may increase the likelihood of loss of genetic diversity in expanding species, which may affect whether or not species can adapt to future environmental change.


2021 ◽  
Author(s):  
Tomáš Vlasta ◽  
Zuzana Műnzbergová

Abstract Loss of genetic diversity is expected to be a common reason for decline of populations of many rare species. To what extent this is true for populations at the range periphery remains to be explored. Alpine species with peripheral lowland populations are ideal but poorly known model system to address this issue. We investigated genetic diversity and structure of populations of Tofieldia calyculata, species common in central European mountains but highly endangered in lowlands using 17 microsatellite loci. We showed that lowland populations have lower genetic diversity than mountain populations and they are not clearly differentiated from mountain populations. Species probably survived the last glaciation in refugia in margins of Alps and western Carpathians. Some lowland populations are probably relict as well and contain unique genetic information. Their low genetic diversity is likely the result the of reduction of population sizes, gene flow during the Holocene and selfing. However postglacial colonization is also a case of some lowland populations. Based on data from herbarium specimens from extinct lowland populations, we demonstrated that lowland populations had low genetic diversity also in the past and main part of the genetic diversity was lost due to extinction of whole populations. Within population genetic diversity has not changed since the last century suggesting that these populations are able to survive with low levels of genetic diversity under suitable habitat conditions. This idea is also supported by finding of large viable recent populations with very low genetic diversity. We conclude that lowland populations are unique and deserve adequate conservation.


Sign in / Sign up

Export Citation Format

Share Document