scholarly journals A Supervised Machine Learning Approach to Detect the On/Off State in Parkinson’s Disease Using Wearable Based Gait Signals

Diagnostics ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 421
Author(s):  
Satyabrata Aich ◽  
Jinyoung Youn ◽  
Sabyasachi Chakraborty ◽  
Pyari Mohan Pradhan ◽  
Jin-han Park ◽  
...  

Fluctuations in motor symptoms are mostly observed in Parkinson’s disease (PD) patients. This characteristic is inevitable, and can affect the quality of life of the patients. However, it is difficult to collect precise data on the fluctuation characteristics using self-reported data from PD patients. Therefore, it is necessary to develop a suitable technology that can detect the medication state, also termed the “On”/“Off” state, automatically using wearable devices; at the same time, this could be used in the home environment. Recently, wearable devices, in combination with powerful machine learning techniques, have shown the potential to be effectively used in critical healthcare applications. In this study, an algorithm is proposed that can detect the medication state automatically using wearable gait signals. A combination of features that include statistical features and spatiotemporal gait features are used as inputs to four different classifiers such as random forest, support vector machine, K nearest neighbour, and Naïve Bayes. In total, 20 PD subjects with definite motor fluctuations have been evaluated by comparing the performance of the proposed algorithm in association with the four aforementioned classifiers. It was found that random forest outperformed the other classifiers with an accuracy of 96.72%, a recall of 97.35%, and a precision of 96.92%.

2020 ◽  
Vol 10 (4) ◽  
pp. 242 ◽  
Author(s):  
Daniele Pietrucci ◽  
Adelaide Teofani ◽  
Valeria Unida ◽  
Rocco Cerroni ◽  
Silvia Biocca ◽  
...  

The involvement of the gut microbiota in Parkinson’s disease (PD), investigated in several studies, identified some common alterations of the microbial community, such as a decrease in Lachnospiraceae and an increase in Verrucomicrobiaceae families in PD patients. However, the results of other bacterial families are often contradictory. Machine learning is a promising tool for building predictive models for the classification of biological data, such as those produced in metagenomic studies. We tested three different machine learning algorithms (random forest, neural networks and support vector machines), analyzing 846 metagenomic samples (472 from PD patients and 374 from healthy controls), including our published data and those downloaded from public databases. Prediction performance was evaluated by the area under curve, accuracy, precision, recall and F-score metrics. The random forest algorithm provided the best results. Bacterial families were sorted according to their importance in the classification, and a subset of 22 families has been identified for the prediction of patient status. Although the results are promising, it is necessary to train the algorithm with a larger number of samples in order to increase the accuracy of the procedure.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 403
Author(s):  
Muhammad Waleed ◽  
Tai-Won Um ◽  
Tariq Kamal ◽  
Syed Muhammad Usman

In this paper, we apply the multi-class supervised machine learning techniques for classifying the agriculture farm machinery. The classification of farm machinery is important when performing the automatic authentication of field activity in a remote setup. In the absence of a sound machine recognition system, there is every possibility of a fraudulent activity taking place. To address this need, we classify the machinery using five machine learning techniques—K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB). For training of the model, we use the vibration and tilt of machinery. The vibration and tilt of machinery are recorded using the accelerometer and gyroscope sensors, respectively. The machinery included the leveler, rotavator and cultivator. The preliminary analysis on the collected data revealed that the farm machinery (when in operation) showed big variations in vibration and tilt, but observed similar means. Additionally, the accuracies of vibration-based and tilt-based classifications of farm machinery show good accuracy when used alone (with vibration showing slightly better numbers than the tilt). However, the accuracies improve further when both (the tilt and vibration) are used together. Furthermore, all five machine learning algorithms used for classification have an accuracy of more than 82%, but random forest was the best performing. The gradient boosting and random forest show slight over-fitting (about 9%), but both algorithms produce high testing accuracy. In terms of execution time, the decision tree takes the least time to train, while the gradient boosting takes the most time.


2019 ◽  
Vol 4 (1) ◽  
pp. 43
Author(s):  
Nfn Nofriani

Poverty has been a major problem for most countries around the world, including Indonesia. One approach to eradicate poverty is through equitable distribution of social assistance for target households based on Integrated Database of social assistance. This study has compared several well-known supervised machine learning techniques, namely: Naïve Bayes Classifier, Support Vector Machines, K-Nearest Neighbor Classification, C4.5 Algorithm, and Random Forest Algorithm to predict household welfare status classification by using an Integrated Database as a study case. The main objective of this study was to choose the best-supervised machine learning approach in predicting the classification of household’s welfare status based on attributes in the Integrated Database. The results showed that the Random Forest Algorithm was the best.


Author(s):  
Chetan Balaji ◽  
D. S. Suresh

The aging population is primarily affected by Alzheimer’s disease (AD) that is an incurable neurodegenerative disorder. There is a need for an automated efficient technique to diagnose Alzheimer’s in its early stage. Various techniques are used to diagnose AD. EEG and neuroimaging methodologies are widely used to highlight changes in the electrical activity of the brain signals that are helpful for early diagnosis. Parkinson’s disease (PD) is a major neurological disease that results in an average of 50,000 new clinical diagnoses worldwide every year. The voice features are majorly used as the main means to diagnose PD. The major symptoms of PD are loss of intensity, the monotony of loudness and pitch, reduction in stress, unidentified silences, and dysphonia. Even though various innovative models are proposed by explorers about Alzheimer’s and Parkinson’s classification diseases, still there is a need for efficient learning methodologies and techniques. This paper provides a review on using machine learning (ML) together with several feature extraction techniques that is helpful in the early detection of AD with Parkinson’s. The novelty and objective of this study are that the CAD technique is used to improve the accuracy of early diagnosis of AD. The proposed technique depends on the nonlinear process for data dimension reduction, feature removal, and classification using kernel-based support vector machine (SVM) classifiers. The dimension of the input space is radically diminished with kernel methods. As the learning set is labeled, it creates sense to utilize this information to make a dependable method of dropping the input space dimension. The different techniques of ML are explained under the major approaches viz. SVM, artificial neural network (ANN), deep learning (DL), and ensemble methods. A comprehensive assessment is presented at SVM, ANN, and DL approaches for better detection of Alzheimer’s with PD highlighting future insights.


2020 ◽  
Author(s):  
Sanghee Moon ◽  
Hyun-Je Song ◽  
Vibhash D. Sharma ◽  
Kelly E. Lyons ◽  
Rajesh Pahwa ◽  
...  

AbstractParkinson’s disease (PD) and essential tremor (ET) are movement disorders that can have similar clinical characteristics including tremor and gait difficulty. These disorders can be misdiagnosed leading to delay in appropriate treatment. The aim of the study was to determine whether gait and balance variables obtained with wearable sensors can be utilized to differentiate between PD and ET using machine learning techniques. Additionally, we compared classification performances of several machine learning models. A balance and gait data set collected from 567 people with PD or ET was investigated. Performance of several machine learning techniques including neural networks (NN), support vector machine (SVM), k-nearest neighbor (kNN), decision tree (DT), random forest (RF), and gradient boosting (GB), were compared using F1-scores. Machine learning models classified PD and ET based on balance and gait characteristics better than chance or logistic regression. The highest F1-score was 0.61 of NN, followed by 0.59 of GB, 0.56 of RF, 0.55 of SVM, 0.53 of DT, and 0.49 of kNN. The results demonstrated the utility of machine learning models to classify different movement disorders. Further study will provide a more accurate clinical tool to help clinical decision-making.


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


Sign in / Sign up

Export Citation Format

Share Document