scholarly journals Bioanalytical Performance of a New Particle-Enhanced Method for Measuring Procalcitonin

Diagnostics ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 461
Author(s):  
Anne Marie Dupuy ◽  
Anne Sophie Bargnoux ◽  
Romaric Larcher ◽  
Antoine Merindol ◽  
Thomas Masetto ◽  
...  

We report the analytical performances of two particle-enhanced (PETIA) methods for measuring procalcitonin (PCT), the Diazyme PCT and the new DiaSys PCT assay, and their concordance of values with BRAHMS PCT Kryptor©. The total imprecisions onto two control levels and one serum pool were for DiaSys 5.42%, 3.3% and 7.53% and for Diazyme 10.7%, 2.9% and 13.23%, respectively. The limit of blank, limit of detection and limit of quantification were under the 0.25 cut-off for the two methods. The linearity in the lower range was acceptable for both methods. No significant effect on PCT determination was observed for DiaSys’ assay upon addition of interfering substances. With the Diazyme assay, significant effects were seen with rheumatoid factor (RF), lipid and hemoglobin. Correlation studies on 136 sera showed a good correlation between PCT measurements using DiaSys assay against the Kryptor system, while only a poor correlation was observed between the Diazyme assay, especially for low values. The novel PETIA PCT assay from DiaSys shows analytical performances acceptable for clinical use and the concordance with Kryptor method was fine at all clinical cut-offs. In contrast, despite comparable analytical performances, the Diazyme PETIA method exhibited a poor concordance with the Kryptor method.

Author(s):  
ANUJA SURYAWANSHI ◽  
AFAQUEANSARI ◽  
MALLINATH KALSHETTI

Objective: The present work is aimed to develop a simple, rapid, selective and economical UV spectrophotometric method for quantitative determination of Glipizideinbulk and pharmaceutical dosage form. Methods: In this method Dimethyl Form amide (DMF) was used as solvent, the absorption maxima was found to be275 nm in DMF. The developed method was validated for linearity, accuracy, precision, ruggedness, robustness, LOD and LOQ in accordance with the requirements of ICH guideline. Results: The linearity was found to be 10-60 µg/ml having linear equation y=0.017x-0.006 with correlation coefficient of 0.997. The% recovery was found to be in the range of 98.7-100%. The % RSD for intra-day and inter-day precision was found to be 0.569923 and 0.40169 respectively. The limit of detection (LOD) and limit of quantification (LOQ) was found to be3.06 µg/ml and 9.27 µg/ml respectively. Conclusion: The developed method was validated as per ICH Q2(R1) guidelines. The novel method is applicable for the analysis of bulk drug in its pharmaceutical dosage form.


2010 ◽  
Vol 56 (8) ◽  
pp. 1336-1339 ◽  
Author(s):  
Jinong Li ◽  
Willard Dunn ◽  
Autumn Breaud ◽  
Debra Elliott ◽  
Lori J Sokoll ◽  
...  

BACKGROUND We evaluated the analytical performance of 4 cystatin C assays (Siemens N Latex on BNII, Roche Tina-quant on Cobas c501, Genzyme on Cobas c501, and Tosoh ST AIA-PACK on Tosoh AIA-600II) according to guidelines published by the Clinical and Laboratory Standards Institute. METHODS We evaluated total imprecision, limit of detection, and limit of quantification for each assay using patient serum pools and linearity/recovery using serial dilutions of a patient serum pool with cystatin C–free serum. We compared patients (n = 102) using the Siemens assay as a comparison method. RESULTS All assays had limits of detection and quantification <0.08 and <0.39 mg/L, respectively. Total CVs were generally higher than the manufacturers' claims for all assays. The Roche assay overrecovered cystatin C, particularly at low concentrations (mean recovery 119%, 142% at 0.587 mg/L). Deming regression equations were y = 1.184x + 0.089, Sy|x = 0.246 for Genzyme; y = 0.937x + 0.231, Sy|x = 0.231 for Roche; and y = 1.010x + 0.216, Sy|x = 0.115 for Tosoh. The Genzyme assay appeared to report higher results than the Siemens assay, which is consistent with a higher reference interval specified by the manufacturer. CONCLUSIONS Although all assays were acceptable for clinical use, their diagnostic performances were not optimal. Limitations include imprecision greater than claimed, overrecovery for the Roche assay on low concentration samples, and differences in results for patient samples. The latter situation requires assay-specific cystatin C–based glomerular filtration rate prediction equations at least until calibration is standardized using the international cystatin C calibrator now being developed.


Author(s):  
Mohammad Hamzah Hamzah ◽  
Rawa M M Taqi ◽  
Muna M. Hasan ◽  
Raid J. M. Al-Timimi

A simple and accurate spectrophotometric method for the determination of Trifluoperazine HCl in pure and dosage forms was developed. The method is based on the reaction between Trifluoperazine HCl and p-chloroaniline in the presence of cerium ion as oxidizing agent which lead to the formation of violate color product that absorbed at a maximum wavelength 570nm while the blank solution was pink. Under the optimum conditions a linear relationship between the intensity and concentration of TRF in the range 4-50μg/ml was obtained . The molar absorptivity 3.74×103 L.mol-1.cm-1 , Limit of detection (2.21μg/ml), while limit of quantification was 7.39μg/ml. The proposed analytical method was compared with standard method using t-test and F-test , the obtained results shows there is no significant differences between proposed method and standard method. Based on that the proposed method can be used as an alternative method for the determination of TRF in pure and dosage forms.


Author(s):  
Sidra Amin ◽  
Amber R. Solangi ◽  
Dilawar Hassan ◽  
Nadir Hussain ◽  
Jamil Ahmed ◽  
...  

Background: In recent years, the occurrence and fate of environmental pollutants has been recognized as one of the emerging issues in environmental chemistry. A survey documented about a wide variety of these pollutants, which are often detected in our environment and these are major cause of shortened life spans and the global warming. These pollutants include toxic metal, pesticides, fertilizers, drugs and dyes released into soil and major water bodies. The presence of these contaminants causes major disturbance in eco-system’s balance. To tackle these issues many technological improvements are made to detect minute contaminations. The latest issue being answered by the scientists is the use of green nano materials as sensors which are economical, instant and give much better results at low concentrations and can be used for the field measurements resulting in no dangerous by-product that could lead to more environmental contamination. Nano materials are known for their wide band gap, enhanced physical and optical properties with option of tuneablity as per need, by optimizing certain parameters. They are proved to be good choice for analytical/optical sensors with high sensitivity. Objective: This review holds information about multiple methods that use green nanomaterials for the analytical assessment of environmental pollutants. UV-Vis spectrophotometry and electrochemical analysis using green and reproducible nanomaterials are the major focus of this review article. To date, there are number of spectrophotometric and electro chemical methods available that have been used for the detection of environmental pollutants such as toxic metals, pesticides and dyes. Conclusion: The use of nanomaterials can drastically change the detection limits due to having large surface area, strong catalytic properties, and tunable possibility. With the use of nano materials, lower than the marked limit of detection and limit of quantification were seen when compared with previously reported work. The used nano-materials could be washed, dried, and reused, which makes the methods more proficient, cost effective and environmentally friendly.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nadereh Rahbar ◽  
Fatemeh Ahmadi ◽  
Zahra Ramezani ◽  
Masoumeh Nourani

Background: Sample preparation is one of the most challenging phases in pharmaceutical analysis, especially in biological matrices, affecting the whole analytical methodology. Objective: In this study, a new Ca(II)/Cu(II)/alginate/CuO nanoparticles hydrogel fiber (CCACHF) was synthesized through a simple, green procedure and applied for fiber micro solid phase extraction (FMSPE) of diazepam (DIZ) and oxazepam (OXZ) as model drugs prior to high-performance liquid chromatography-UV detection (HPLC-UV). Methods: Composition and morphology of the prepared fiber were characterized and the effect of main parameters on the fiber fabrication and extraction efficiency have been studied and optimized. Results: In optimal conditions, calibration curves were linear ranging between 0.1–500 µg L−1 with regression coefficients of 0.9938 and 0.9968. Limit of detection (LOD) (S/N=3) and limit of quantification (LOQ) (S/N=10) of the technique for DIZ and OXZ were 0.03 to 0.1 µg L−1. Within-day and between-day relative standard deviations (RSDs) for DIZ and OXZ were 6.0–12.5% and 3.3–9.4%, respectively. Conclusion: The fabricated adsorbent has been substantially employed to extraction of selected benzo-diazepines (BZDs) from human serum real specimens and the obtained recoveries were also satisfactory (82.1-109.7%).


2020 ◽  
Vol 16 (3) ◽  
pp. 277-286
Author(s):  
Amal A. El-Masry ◽  
Mohammed E. A. Hammouda ◽  
Dalia R. El-Wasseef ◽  
Saadia M. El-Ashry

Background: The first highly sensitive, rapid and specific green microemulsion liquid chromatographic (MELC) method was established for the simultaneous estimation of fluticasone propionate (FLU) and azelastine HCl (AZL) in the presence of their pharmaceutical dosage form additives (phenylethyl alcohol (PEA) and benzalkonium chloride (BNZ)). Methods: The separation was performed on a C18 column using (o/w) microemulsion as a mobile phase which contains 0.2 M sodium dodecyl sulphate (SDS) as surfactant, 10% butanol as cosurfactant, 1% n-octanol as internal phase and 0.3% triethylamine (TEA) adjusted at pH 6 by 0.02 M phosphoric acid; with UV detection at 220 nm and programmed with flow rate of 1 mL/min. Results: The validation characteristics e.g. linearity, lower limit of quantification (LOQ), lower limit of detection (LOD), accuracy, precision, robustness and specificity were investigated. The proposed method showed linearity over the concentration range of (0.5-25 µg/mL) and (0.1-25 µg/mL) for FLU and AZL, respectively. Besides that, the method was adopted in a short chromatographic run with satisfactory resolution factors of (2.39, 3.78 and 6.74 between PEA/FLU, FLU/AZL and AZL/BNZ), respectively. The performed method was efficiently applied to pharmaceutical nasal spray with (mean recoveries ± SD) (99.80 ± 0.97) and (100.26 ± 0.96) for FLU and AZL, respectively. Conclusion: The suggested method was based on simultaneous determination of FLU and AZL in the presence of PEA and BNZ in pure form, laboratory synthetic mixture and its combined pharmaceutical dosage form using green MELC technique with UV detection. The proposed method appeared to be superior to the reported ones of being more sensitive and specific, as well as the separation was achieved with good performance in a relatively short analysis time (less than 7.5 min). Highly acceptable values of LOD and % RSD make this method superior to be used in quality control laboratories with of HPLC technique.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 723
Author(s):  
Kgotla K. Masibi ◽  
Omolola E. Fayemi ◽  
Abolanle S. Adekunle ◽  
Amal M. Al-Mohaimeed ◽  
Asmaa M. Fahim ◽  
...  

This report narrates the successful application of a fabricated novel sensor for the trace detection of endosulfan (EDS). The sensor was made by modifying a glassy-carbon electrode (GCE) with polyaniline (PANI), chemically synthesized antimony oxide nanoparticles (AONPs), acid-functionalized, single-walled carbon nanotubes (fSWCNTs), and finally, the AONP-PANI-SWCNT nanocomposite. The electrochemical properties of the modified electrodes regarding endosulfan detection were investigated via cyclic voltammetry (CV) and square-wave voltammetry. The current response of the electrodes to EDS followed the trend GCE-AONP-PANI-SWCNT (−510 µA) > GCE-PANI (−59 µA) > GCE-AONPs (−11.4 µA) > GCE (−5.52 µA) > GCE-fSWCNTs (−0.168 µA). The obtained results indicated that the current response obtained at the AONP-PANI-SWCNT/GCE was higher with relatively low overpotential compared to those from the other electrodes investigated. This demonstrated the superiority of the AONP-PANI-SWCNT-modified GCE. The AONP-PANI-SWCNT/GCE demonstrated good electrocatalytic activities for the electrochemical reduction of EDS. The results obtained in this study are comparable with those in other reports. The sensitivity, limit of detection (LoD), and limit of quantification (LoQ) of AONP-PANI-SWCNT/GCE towards EDS was estimated to be 0.0623 µA/µM, 6.8 µM, and 20.6 µM, respectively. Selectivity, as well as the practical application of the fabricated sensor, were explored, and the results indicated that the EDS-reduction current was reduced by only 2.0% when interfering species were present, whilst average recoveries of EDS in real samples were above 97%.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Colin Wood ◽  
Jason Sahl ◽  
Sara Maltinsky ◽  
Briana Coyne ◽  
Benjamin Russakoff ◽  
...  

Abstract Background Molecular assays are important tools for pathogen detection but need to be periodically re-evaluated with the discovery of additional genetic diversity that may cause assays to exclude target taxa or include non-target taxa. A single well-developed assay can find broad application across research, clinical, and industrial settings. Pathogen prevalence within a population is estimated using such assays and accurate results are critical for formulating effective public health policies and guiding future research. A variety of assays for the detection of Staphylococcus aureus are currently available. The utility of commercial assays for research is limited, given proprietary signatures and lack of transparent validation. Results In silico testing of existing peer-reviewed assays show that most suffer from a lack of sensitivity and specificity. We found no assays that were specifically designed and validated for quantitative use. Here we present a qPCR assay, SaQuant, for the detection and quantification of S. aureus as might be collected on sampling swabs. Sensitivity and specificity of the assay was 95.6 and 99.9 %, respectively, with a limit of detection of between 3 and 5 genome equivalents and a limit of quantification of 8.27 genome equivalents. The presence of DNA from non-target species likely to be found in a swab sample, did not impact qualitative or quantitative abilities of the assay. Conclusions This assay has the potential to serve as a valuable tool for the accurate detection and quantification of S. aureus collected from human body sites in order to better understand the dynamics of prevalence and transmission in community settings.


2020 ◽  
Vol 18 (1) ◽  
pp. 962-973
Author(s):  
Saira Arif ◽  
Sadia Ata

AbstractA rapid and specific method was developed for simultaneous quantification of hydrocortisone 21 acetate (HCA), dexamethasone (DEX), and fluocinolone acetonide (FCA) in whitening cream formulations using reversed-phase high-performance liquid chromatography. The effect of the composition of the mobile phase, analysis temperature, and detection wavelength was investigated to optimize the separation of studied components. The analytes were finally well separated using ACE Excel 2, C18 AR column having 150 mm length, 3 mm internal diameter, and 2 µm particle size at 35°C using methanol with 1% formic acid and double-distilled deionized water in the ratio of 60:40 (v/v), respectively, as the mobile phase in isocratic mode. Ten microliters of sample were injected with a flow rate of 0.5 mL/min. The specificity, linearity, accuracy, precision, recovery, limit of detection (LOD), limit of quantification (LOQ), and robustness were determined to validate the method as per International Conference on Harmonization guidelines. All the analytes were simultaneously separated within 8 min, and observed retention times of HCA, DEX, and FCA were 4.5, 5.5, and 6.9 min, respectively. The proposed method showed good linearity with the correlation coefficient, R2 = 0.999 over the range of 1–150 µg/mL for all standards. The linear regression equations were y = 12.7x + 118.7 (r = 0.999) for HCA, y = 12.9x + 106.8 (r = 0.999) for DEX, and y = 12.9x + 96.8 (r = 0.999) for FCA. The LOD was 0.25, 0.20, and 0.08 µg/mL for HCA, FCA, and DEX and LOQ was 2.06, 1.83, and 1.55 µg/mL for HCA, FCA, and DEX, respectively. The recovery values of HCA, DEX, and FCA ranged from 100.7–101.3, 102.0–102.6, and 100.2–102.0%, respectively, and the relative standard deviation for precision (intra- and interday) was less than 2, which indicated repeatability and reproducibility. The novelty of the method was described by forced degradation experimentation of all analytes in the combined form under acidic, basic, oxidative, and thermal stress. The proposed method was found to be simple, rapid, and reliable for the simultaneous determination of HCA, DEX, and FCA in cosmetics.


2020 ◽  
Vol 58 (9) ◽  
pp. 1461-1468 ◽  
Author(s):  
Jean-Claude Alvarez ◽  
Pierre Moine ◽  
Isabelle Etting ◽  
Djillali Annane ◽  
Islam Amine Larabi

AbstractObjectivesA method based on liquid chromatography coupled to triple quadrupole mass spectrometry detection using 50 µL of plasma was developed and fully validated for quantification of remdesivir and its active metabolites GS-441524.MethodsA simple protein precipitation was carried out using 75 µL of methanol containing the internal standard (IS) remdesivir-13C6 and 5 µL ZnSO4 1 M. After separation on Kinetex® 2.6 µm Polar C18 100A LC column (100 × 2.1 mm i.d.), both compounds were detected by a mass spectrometer with electrospray ionization in positive mode. The ion transitions used were m/z 603.3 → m/z 200.0 and m/z 229.0 for remdesivir, m/z 292.2 → m/z 173.1 and m/z 147.1 for GS-441524 and m/z 609.3 → m/z 206.0 for remdesivir-13C6.ResultsCalibration curves were linear in the 1–5000 μg/L range for remdesivir and 5–2500 for GS-441524, with limit of detection set at 0.5 and 2 μg/L and limit of quantification at 1 and 5 μg/L, respectively. Precisions evaluated at 2.5, 400 and 4000 μg/L for remdesivir and 12.5, 125, 2000 μg/L for GS-441524 were lower than 14.7% and accuracy was in the [89.6–110.2%] range. A slight matrix effect was observed, compensated by IS. Higher stability of remdesivir and metabolite was observed on NaF-plasma. After 200 mg IV single administration, remdesivir concentration decrease rapidly with a half-life less than 1 h while GS-441524 appeared rapidly and decreased slowly until H24 with a half-life around 12 h.ConclusionsThis method would be useful for therapeutic drug monitoring of these compounds in Covid-19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document