scholarly journals Classification of Brain MRI Tumor Images Based on Deep Learning PGGAN Augmentation

Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2343
Author(s):  
Ahmed M. Gab Allah ◽  
Amany M. Sarhan ◽  
Nada M. Elshennawy

The wide prevalence of brain tumors in all age groups necessitates having the ability to make an early and accurate identification of the tumor type and thus select the most appropriate treatment plans. The application of convolutional neural networks (CNNs) has helped radiologists to more accurately classify the type of brain tumor from magnetic resonance images (MRIs). The learning of CNN suffers from overfitting if a suboptimal number of MRIs are introduced to the system. Recognized as the current best solution to this problem, the augmentation method allows for the optimization of the learning stage and thus maximizes the overall efficiency. The main objective of this study is to examine the efficacy of a new approach to the classification of brain tumor MRIs through the use of a VGG19 features extractor coupled with one of three types of classifiers. A progressive growing generative adversarial network (PGGAN) augmentation model is used to produce ‘realistic’ MRIs of brain tumors and help overcome the shortage of images needed for deep learning. Results indicated the ability of our framework to classify gliomas, meningiomas, and pituitary tumors more accurately than in previous studies with an accuracy of 98.54%. Other performance metrics were also examined.

Author(s):  
K.Ganga Durga Prasad ◽  
A.J.N. Murthy ◽  
G Narasimha ◽  
New Sinha

The brain tumors, are the maximum not unusual place and threatening disease, main to a totally quick lifestyles of their maximum grade. Thus, remedy making plans is a key level to enhance the lifestyles of sufferers. Normally, distinct photo strategies which includes CT, MRI and ultrasound photo are used to hit upon the tumor in a brain. on this approach MRI photos are used to diagnose brain tumor guide type of tumor vs non-tumor is a tough challenge for radiologosts. we gift an approach for detection and type of tumors with inside the brain. The computerized brain tumor type could be very hard challenge in brain tumor. In this approach, computerized brain tumor detection is executedwith the aid of usingthe use of Convolutional Neural Networks (CNN) type.Our proposed automation gadgetcould take an MRI and examine it to locate bengin (non-cancerous) or malignant (cancerous).


2021 ◽  
Vol 38 (4) ◽  
pp. 1171-1179
Author(s):  
Swaraja Kuraparthi ◽  
Madhavi K. Reddy ◽  
C.N. Sujatha ◽  
Himabindu Valiveti ◽  
Chaitanya Duggineni ◽  
...  

Manual tumor diagnosis from magnetic resonance images (MRIs) is a time-consuming procedure that may lead to human errors and may lead to false detection and classification of the tumor type. Therefore, to automatize the complex medical processes, a deep learning framework is proposed for brain tumor classification to ease the task of doctors for medical diagnosis. Publicly available datasets such as Kaggle and Brats are used for the analysis of brain images. The proposed model is implemented on three pre-trained Deep Convolution Neural Network architectures (DCNN) such as AlexNet, VGG16, and ResNet50. These architectures are the transfer learning methods used to extract the features from the pre-trained DCNN architecture, and the extracted features are classified by using the Support Vector Machine (SVM) classifier. Data augmentation methods are applied on Magnetic Resonance images (MRI) to avoid the network from overfitting. The proposed methodology achieves an overall accuracy of 98.28% and 97.87% without data augmentation and 99.0% and 98.86% with data augmentation for Kaggle and Brat's datasets, respectively. The Area Under Curve (AUC) for Receiver Operator Characteristic (ROC) is 0.9978 and 0.9850 for the same datasets. The result shows that ResNet50 performs best in the classification of brain tumors when compared with the other two networks.


Automated brain tumor identification and classification is still an open problem for research in the medical image processing domain. Brain tumor is a bunch of unwanted cells that develop in the brain. This growth of a tumor takes up space within skull and affects the normal functioning of brain. Automated segmentation and detection of brain tumors are important in MRI scan analysis as it provides information about neural architecture of brain and also about abnormal tissues that are extremely necessary to identify appropriate surgical plan. Automating this process is a challenging task as tumor tissues show high diversity in appearance with different patients and also in many cases they tend to appear very similar to the normal tissues. Effective extraction of features that represent the tumor in brain image is the key for better classification. In this paper, we propose a hybrid feature extraction process. In this process, we combine the local and global features of the brain MRI using first by Discrete Wavelet Transformation and then using texture based statistical features by computing Gray Level Co-occurrence Matrix. The extracted combined features are used to construct decision tree for classification of brain tumors in to benign or malignant class.


2021 ◽  
Vol 18 (1) ◽  
pp. 21-27
Author(s):  
Assalah Atiyah ◽  
Khawla Ali

Brain tumors are collections of abnormal tissues within the brain. The regular function of the brain may be affected as it grows within the region of the skull. Brain tumors are critical for improving treatment options and patient survival rates to prevent and treat them. The diagnosis of cancer utilizing manual approaches for numerous magnetic resonance imaging (MRI) images is the most complex and time-consuming task. Brain tumor segmentation must be carried out automatically. A proposed strategy for brain tumor segmentation is developed in this paper. For this purpose, images are segmented based on region-based and edge-based. Brain tumor segmentation 2020 (BraTS2020) dataset is utilized in this study. A comparative analysis of the segmentation of images using the edge-based and region-based approach with U-Net with ResNet50 encoder, architecture is performed. The edge-based segmentation model performed better in all performance metrics compared to the region-based segmentation model and the edge-based model achieved the dice loss score of 0. 008768, IoU score of 0. 7542, f1 score of 0. 9870, the accuracy of 0. 9935, the precision of 0. 9852, recall of 0. 9888, and specificity of 0. 9951.


2021 ◽  
Author(s):  
ANKIT GHOSH ◽  
ALOK KOLE

<p>The improvement of Artificial Intelligence (AI) and Machine Learning (ML) can help radiologists in tumor diagnostics without invasive measures. Magnetic resonance imaging (MRI) is a very useful method for diagnosis of tumors in human brain. In this paper, brain MRI images have been analyzed to detect the regions containing tumors and classify these regions into three different tumor categories: meningioma, glioma, and pituitary. This paper presents the implementation and comparison of various enhanced ML algorithms for the detection and classification of brain tumors. A brain tumor is the growth of abnormal cells in the human brain. Brain tumors can be cancerous or non-cancerous. Cancerous or malignant brain tumors can be life threatening. Hence, detection and classification of brain tumors at an early stage is extremely important. In this paper, enhanced ML algorithms have been implemented to predict the presence or the absence of brain tumors using binary classification and to predict whether a patient has brain tumor or not and if he does, detect the type of brain tumor using multi-class classification. The dataset that has been used to perform the binary classification task comprises of two types of brain MRI images with tumor and without tumor. Here nine ML algorithms namely, Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbor (KNN), Naïve Bayes (NB), Decision Tree (DT) classifier, Random Forest classifier, XGBoost classifier, Stochastic Gradient Descent (SGD) classifier and Gradient Boosting classifier have been used to classify the MRI images. A comparative analysis of the ML algorithms has been performed based on a few performance metrics such as accuracy, recall, and precision, F1-score, AUC-ROC curve and AUC-PR curve. Gradient Boosting classifier has outperformed all the other algorithms with an accuracy of 92.4%, recall of 94.4%, precision of 85%, F1-score of 89.5%, AUC-ROC of 97.2% and an AUC-PR of 91.4%. To address the multi-class classification problem, four ML algorithms namely, SVM, KNN, Random Forest classifier and XGBoost classifier have been employed. In this case, the dataset that has been used consists of four types of brain MRI images with glioma tumor, meningioma tumor, and pituitary tumor and with no tumor. The performances of the ML algorithms have been compared based on accuracy, recall, precision and the F1-score. XGBoost classifier has surpassed all the other algorithms in terms of accuracy, precision, recall and F1-score. XGBoost has produced an accuracy of 90%, precision of 90%, and recall of 90% and F1-score of 90%.</p>


Author(s):  
Bichitra Panda ◽  
Chandra Sekhar Panda

Brain tumor is one of the leading disease in the world. So automated identification and classification of tumors are important for diagnosis. Magnetic resonance imaging (MRI)is widely used modality for imaging brain. Brain tumor classification refers to classify the brain MR images as normal or abnormal, benign or malignant, low grade or high grade or types. This paper reviews various techniques used for the classification of brain tumors from MR images. Brain tumor classification can be divided into three phases as preprocessing, feature extraction and classification. As segmentation is not mandatory for classification, hence resides in the first phase. The feature extraction phase also contains feature reduction. DWT is efficient for both preprocessing and feature extraction. Texture analysis based on GLCM gives better features for classification where PCA reduces the feature vector maintaining the accuracy of classification of brain MRI. Shape features are important where segmentation has already been performed. The use of SVM along with appropriate kernel techniques can help in classifying the brain tumors from MRI. High accuracy has been achieved to classify brain MRI as normal or abnormal, benign or malignant and low grade or high grade. But classifying the tumors into more particular types is more challenging.


2020 ◽  
Vol 37 (5) ◽  
pp. 865-871
Author(s):  
Putta Rama Krishnaveni ◽  
Gattim Naveen Kishore

In view of insights of the Central Brain Tumor Registry of the United States (CBTRUS), brain tumor is one of the main sources of disease related deaths in the World. It is the subsequent reason for tumor related deaths in adults under the age 20-39. Magnetic Resonance Imaging (MRI) is assuming a significant job in the examination of neuroscience for contemplating brain images. The investigation of brain MRI Images is useful in brain tumor analysis process. Features will be extricated and selected from the segmented pictures and afterward grouped by utilizing the classification procedures to analyze whether the patient is ordinary (having no tumor) or irregular (having tumor). One of the most dangerous cancers is brain tumor or cancer which affects the human body's main nervous system. Infection that can affect is very sensitive to the brain. Two types of brain tumors are present. The tumor may be categorized as benign and malignant. The benign tumor represents a change in the shape and structure of the cells, but cannot contaminate or spread to other cells in the brain. The malignant tumor can spread and grow if not carefully treated and removed. The detection of brain tumors is a difficult and sensitive task involving the classifier's experience. In the proposed work a Group based Classifier for Brain Tumor Recognition (GbCBTD) is introduced for the efficient segmentation of MRI images and for identification of tumor. The use of Convolutional Neural Network (CNN) system to classify the brain tumor type is presented in this work. Relevant features are extracted from images and by using CNN with machine learning technique, tumor can be recognized. CNN can reduce the cost and increase the performance of brain tumor detection. The proposed work is compared to the traditional methods and the results show that the proposed method is effective in detecting tumors.


Author(s):  
Ahmad M. Sarhan

A brain tumor is a mass of abnormal cells in the brain. Brain tumors can be benign or malignant. Conventional diagnosis of a brain tumor by the radiologist, is done by examining a set of images produced by magnetic resonance imaging (MRI). Many computer-aided detection (CAD) systems have been developed in order to help the radiologist reach his goal of correctly classifying the MRI image. Convolutional neural networks (CNNs) have been widely used in the classification of medical images. This paper presents a novel CAD technique for the classification of brain tumors in MRI images The proposed system extracts features from the brain MRI images by utilizing the strong energy compactness property exhibited by the Discrete Wavelet transform (DWT). The Wavelet features are then applied to a CNN to classify the input MRI image. Experimental results indicate that the proposed approach outperforms other commonly used methods and gives an overall accuracy of 98.5%.


Sign in / Sign up

Export Citation Format

Share Document