scholarly journals Detection and Classification of Brain Tumor in MRI Images Using Wavelet Transform and Convolutional Neural Network

Author(s):  
Ahmad M. Sarhan

A brain tumor is a mass of abnormal cells in the brain. Brain tumors can be benign or malignant. Conventional diagnosis of a brain tumor by the radiologist, is done by examining a set of images produced by magnetic resonance imaging (MRI). Many computer-aided detection (CAD) systems have been developed in order to help the radiologist reach his goal of correctly classifying the MRI image. Convolutional neural networks (CNNs) have been widely used in the classification of medical images. This paper presents a novel CAD technique for the classification of brain tumors in MRI images The proposed system extracts features from the brain MRI images by utilizing the strong energy compactness property exhibited by the Discrete Wavelet transform (DWT). The Wavelet features are then applied to a CNN to classify the input MRI image. Experimental results indicate that the proposed approach outperforms other commonly used methods and gives an overall accuracy of 98.5%.

Automated brain tumor identification and classification is still an open problem for research in the medical image processing domain. Brain tumor is a bunch of unwanted cells that develop in the brain. This growth of a tumor takes up space within skull and affects the normal functioning of brain. Automated segmentation and detection of brain tumors are important in MRI scan analysis as it provides information about neural architecture of brain and also about abnormal tissues that are extremely necessary to identify appropriate surgical plan. Automating this process is a challenging task as tumor tissues show high diversity in appearance with different patients and also in many cases they tend to appear very similar to the normal tissues. Effective extraction of features that represent the tumor in brain image is the key for better classification. In this paper, we propose a hybrid feature extraction process. In this process, we combine the local and global features of the brain MRI using first by Discrete Wavelet Transformation and then using texture based statistical features by computing Gray Level Co-occurrence Matrix. The extracted combined features are used to construct decision tree for classification of brain tumors in to benign or malignant class.


Author(s):  
P. Chandra Sandeep

The brain is the most crucial part of our human body which acts as central coordinating system for all the controlling and all regular functions of our body. The continuous growth of abnormal cells which creates certain mass of tissue is called as tumor. Tumor in the brain can be either formed inside the brain or gets into brain after formed at other part. But there is no clear information regarding the formation of brain tumor till date. Though the formation tumor in brain is not common or regular but the mortality rate of the infected people is very high because the brain is major part of body. So, it is very important get the treatment at the early stages of brain tumor but there is no direct procedure for detection and classification of tumor in the very first step of diagnosis. In actual medical diagnosis, mri images alone can’t be able to determine the detected tumor as either the cancerous or non-cancerous. But the tumor may be sometimes danger to life or may not be danger to life. Tumor inside the brain can be of either the benign(non- cancerous) or the malignant(cancerous). So, we need to detect the tumor from the MRI images through image processing and then to classify the detected tumor as it belongs to either the benign or malignant tumor. We are going to get the brain mri images as our dataset for our proposed method but the images we got may have the noise. So, we need to preprocess the image using the image preprocessing techniques. We are going to use several algorithms like thresholding, clustering to make the detection of tumor by using the image processing and image segmentation and after the detection of tumor we are going do feature extraction. This step involves the extraction of detected objects features using DWT. This extracted features are given as input to classifier algorithms like SVM’s and CNN after reduction of features using the PCA.


Author(s):  
Nirmal Mungale ◽  
Snehal Kene ◽  
Amol Chaudhary

Brain tumor is a life-threatening disease. Brain tumor is formed by the abnormal growth of cells inside and around the brain. Identification of the size and type of tumor is necessary for deciding the course of treatment of the patient. Magnetic Resonance Imaging (MRI) is one of the methods for detection of tumor in the brain. The classification of MR Images is a difficult task due to variety and complexity of brain tumors. Various classification techniques have been identified for brain MRI tumor images. This paper reviews some of these recent classification techniques.


Author(s):  
Sreenivas Eeshwaroju ◽  
◽  
Praveena Jakula ◽  

The brain tumors are by far the most severe and violent disease, contributing to the highest degree of a very low life expectancy. Therefore, recovery preparation is a crucial step in improving patient quality of life. In general , different imaging techniques such as computed tomography ( CT), magnetic resonance imaging ( MRI) and ultrasound imaging have been used to examine the tumor in the brain, lung , liver, breast , prostate ... etc. MRI images are especially used in this research to diagnose tumor within the brain with classification results. The massive amount of data produced by the MRI scan, therefore, destroys the manual classification of tumor vs. non-tumor in a given period. However for a limited number of images, it is presented with some constraint that is precise quantitative measurements. Consequently, a trustworthy and automated classification scheme is important for preventing human death rates. The automatic classification of brain tumors is a very challenging task in broad spatial and structural heterogeneity of the surrounding brain tumor area. Automatic brain tumor identification is suggested in this research by the use of the classification with Deep Belief Network (DBN). Experimental results show that the DBN archive rate with low complexity seems to be 97 % accurate compared to all other state of the art methods.


Author(s):  
Bichitra Panda ◽  
Chandra Sekhar Panda

Brain tumor is one of the leading disease in the world. So automated identification and classification of tumors are important for diagnosis. Magnetic resonance imaging (MRI)is widely used modality for imaging brain. Brain tumor classification refers to classify the brain MR images as normal or abnormal, benign or malignant, low grade or high grade or types. This paper reviews various techniques used for the classification of brain tumors from MR images. Brain tumor classification can be divided into three phases as preprocessing, feature extraction and classification. As segmentation is not mandatory for classification, hence resides in the first phase. The feature extraction phase also contains feature reduction. DWT is efficient for both preprocessing and feature extraction. Texture analysis based on GLCM gives better features for classification where PCA reduces the feature vector maintaining the accuracy of classification of brain MRI. Shape features are important where segmentation has already been performed. The use of SVM along with appropriate kernel techniques can help in classifying the brain tumors from MRI. High accuracy has been achieved to classify brain MRI as normal or abnormal, benign or malignant and low grade or high grade. But classifying the tumors into more particular types is more challenging.


To identify brain tumors at an early stage is a challenging task. The brain tumor is usually diagnosed with Magnetic Resonance Imaging (MRI). When MRI spectacles a tumor in the brain, the most common way of determining the type of brain tumor after a biopsy or surgery is to look at the results of a tissue sample. In this research to detect brain tumors faster and accurately the feature extraction techniques are used to segment the tumor affected area. One of such very effective technique of feature extraction measure is the Grayscale Co-occurrence Matrix (GLCM). This research focuses on the GLCM and Discrete Wavelet Transformation (DWT) technique to detect and label the tumor from an image based on the textures and categorizing it according to a tumor or non-tumor category. The convolutional neural network (CNN) uses these features to improve the accuracy to 91%.


Author(s):  
Muhammad Irfan Sharif ◽  
Jian Ping Li ◽  
Javeria Amin ◽  
Abida Sharif

AbstractBrain tumor is a group of anomalous cells. The brain is enclosed in a more rigid skull. The abnormal cell grows and initiates a tumor. Detection of tumor is a complicated task due to irregular tumor shape. The proposed technique contains four phases, which are lesion enhancement, feature extraction and selection for classification, localization, and segmentation. The magnetic resonance imaging (MRI) images are noisy due to certain factors, such as image acquisition, and fluctuation in magnetic field coil. Therefore, a homomorphic wavelet filer is used for noise reduction. Later, extracted features from inceptionv3 pre-trained model and informative features are selected using a non-dominated sorted genetic algorithm (NSGA). The optimized features are forwarded for classification after which tumor slices are passed to YOLOv2-inceptionv3 model designed for the localization of tumor region such that features are extracted from depth-concatenation (mixed-4) layer of inceptionv3 model and supplied to YOLOv2. The localized images are passed toMcCulloch'sKapur entropy method to segment actual tumor region. Finally, the proposed technique is validated on three benchmark databases BRATS 2018, BRATS 2019, and BRATS 2020 for tumor detection. The proposed method achieved greater than 0.90 prediction scores in localization, segmentation and classification of brain lesions. Moreover, classification and segmentation outcomes are superior as compared to existing methods.


2021 ◽  
Vol 11 (10) ◽  
pp. 133-144
Author(s):  
Dipak Chaulagain ◽  
Volodymyr Smolanka ◽  
Andriy Smolanka

People, in general, are affected by a brain or intracranial tumor when abnormal cells started functioning within their brain. This paper explores mainly tumors that affect the brain. Almost every type of brain tumor might create symptoms which are based on the parts of the brain affected. In order to better understand reasons of occurrence intracranial tumors in various sections of the population, the study examined the relationship between sociodemographic variables, i.e., age, gender and marital status and the relative frequency of intracranial tumors as part of a study. Samples are collected based on the information from Uzhhorod Regional Center of Neurosurgery and Neurology in Ukraine. And factors such as age, gender and marital status has been considered to examine tumor size variation. The ratios of organ cancers in Ukrainians are evidently increasing. Besides, there has been growing trend in affected rates in both the genders of CNS cancers have been noticed in all the records. The ratio of most harmful brain tumors is comparatively in minimal ratio in East and Southeast Asia, and India. On the other hand, the highest ratio has been noted in European countries and as well United States, and Ukraine is one of those countries. The major burdens of cancer frequency in Ukraine have been noticed in the lung, breast, and prostate and brain. Of these, brain tumor rate in Ukraine had been hardly studied. The major difference in frequency in Asian and European populations implies the potential influence of genetic or environmental factors in malignant brain tumors. Continuing monitoring of tumor ratio in Ukraine is essential to comprehend how best to reduce cancer burden globally and to explain the causes of provincial variations, for example access to diagnosis methods and ecological exposures. Key words: Intracranial tumors, symptoms, tumor incidence in Ukraine, treatment plans, survival rate of cancer in Ukraine.


2021 ◽  
Vol 9 (2) ◽  
pp. 10-15
Author(s):  
Harendra Singh ◽  
Roop Singh Solanki

In this research paper, a new modified approach is proposed for brain tumor classification as well as feature extraction from Magnetic Resonance Imaging (MRI) after pre-processing of the images. The discrete wavelet transformation (DWT) technique is used for feature extraction from MRI images and Artificial Neural Network (ANN) is used for the classification of the type of tumor according to extracted features. Mean, Standard deviation, Variance, Entropy, Skewness, Homogeneity, Contrast, Correlation are the main features used to classify the type of tumor. The proposed model can give a better result in comparison with other available techniques in less computational time as well as a high degree of accuracy. The training and testing accuracies of the proposed model are 100% and 98.20% with a 98.70 % degree of precision respectively.


2020 ◽  
Vol 17 (8) ◽  
pp. 3473-3477
Author(s):  
M. S. Roobini ◽  
T. V. L. Bharathi ◽  
T. Aishwaya Sailaja ◽  
M. Lakshmi ◽  
Anitha Ponraj ◽  
...  

This research proposes a series of algorithms that work for improved Brain Tumor identification and classification. The Brain Tumor study based on the MRI image will effectively resolve the classification method for diagnosis of brain tumors. There are three stages: Extraction of features, Reduction of features and classification. Extraction function and reduction of functionality used for two algorithms. The extracted characteristics are Mean, Standard deviation, Curtosis, Skewness, Entropy Contrast, Variance, Smoothness, Correlation and Power. The result is then supplied to Support Vector Machine (SVM) for the Benign or Malignant classification of tumours.


Sign in / Sign up

Export Citation Format

Share Document